Читаем Feynmann 1 полностью

Когда вы держите груз, вы, конечно, выполняете «физиоло­гическую» работу. Отчего вас бросает в пот? Почему для такого занятия вам необходимо хорошо питаться? Почему все механиз­мы внутри вас работают в полную силу, когда вы подставили спину под груз? Ведь можно на этот груз не тратить никаких усилий, стоит лишь положить его на стол, и стол спокойно и мирно, не нуждаясь ни в какой энергии, будет держать себе тот же груз на той же высоте! Физиология дает примерно следующее объяснение. У человека и у других животных есть два рода мышц. Одни, называемые поперечнополосатыми, или скелетными, контролируются нашей волей; таковы, на­пример, мышцы рук. Другие мышцы называются гладкими (например, мышцы внутренностей или у моллюсков большой замыкающий мускул, который закрывает створки). Гладкие мышцы работают очень медленно, но способны «оцепенеть»; это значит, что если, скажем, моллюску нужно удержать свои створки в определенном положении, то он их удержит, какая бы сила на них ни нажимала. Многие часы способен он без устали держать створки под нагрузкой, подобно столу, на который положен груз; мышца «застывает» в определенном положении, молекулы ее как бы схватываются друг с другом, не совершая никакой работы, не требуя от моллюска никаких усилий. Нам же нужны непрерывные усилия, чтобы удержать вес. Это объясняется просто устройством поперечнополосатых мышц. Когда нервный импульс достигает мышечного волокна, оно несколько сокращается и затем опять расслабляется; когда мы держим груз, то в мышцу сплошным и обильным потоком текут нервные импульсы, множество волокон сокращается, пока дру­гие отдыхают. Это даже можно увидеть: когда рука устает держать тяжесть, она начинает дрожать. Происходит это потому, что поток импульсов нерегулярен и уставшие мышцы не успевают вовремя на них ответить. Почему же мышцы собраны по такой неудачной схеме? Неизвестно почему, но природа не сумела создать быстродействующих гладких мышц. А куда удобнее было бы поднимать грузы именно гладкими мышцами: они способны замирать на месте, они могут цепенеть и для этого не нужно было бы совершать никакой работы и не нужна никакая энергия. Правда, у этих мышц есть один недостаток: они очень медленно работают.

Но вернемся к физике и зададим еще один вопрос: зачем нам подсчитывать выполненную работу? Ответ: потому что это интересно и полезно. Потому что работа, которую про­изводит над частицей равнодействующая всех приложенных к ней сил, в точности равна изменению кинетической энергии этой частицы. Если тело толкнуть, оно наберет скорость, и D(v2)=2/m(F·Ds).

§ 2. Движение при наложенных связях

Силы и работа обладают еще одним интересным свойством. Пусть имеется некоторый уклон, какая-то криволинейная ко­лея, по которой частица должна двигаться без трения. Или имеется маятник — груз на ниточке; нить маятника вынуждает груз двигаться по кругу вокруг точки подвеса. Намотав нить на колышек, можно в качании менять точку подвеса, так что траектория груза будет складываться из двух окружностей разного радиуса. Все это примеры так называемых неподвижных связей без трения.

В движении с неподвижными связями без трения эти связи не производят никакой работы, потому что реакции связей всег­да прилагаются к телу под прямым углом к самим связям; так обстоит дело и с реакцией колеи и с натяжением нити.

Силы, возникающие при движении частицы вниз по склону под действием тяжести, весьма и весьма запутаны: здесь и ре­акции связи, и сила тяжести, и т. п. И все же, если основы­вать свои расчеты движения лишь на сохранении энергии и на учете только силы тяжести, получается правильный резуль­тат. Это выглядит довольно странно, потому что это не совсем правильно; надо было бы пользоваться равнодействующей силой. Тем не менее работа, произведенная только силой тя­жести, оказывается равной изменению кинетической энергии, потому что работа сил связей равна нулю (фиг. 14.1).

Фиг. 14.1. Силы, действующие на тело, скользящее без трения.

Важное свойство сил, о котором мы говорили, состоит в том, что если силу можно разбить на две или несколько «частей», то работа, выполняемая самой силой при движении по некоторой кривой, равна сумме работ, произведенных каждой «частью» силы. Если мы представляем силу в виде векторной суммы не­скольких сил (силы тяжести, реакции связей и т. д., или x-составляющих всех сил плюс y-составляющие и т.д., или еще как-нибудь), то работа всей силы равна сумме работ тех частей, на которые мы ее разделили.

§ 3. Консервативные силы

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука