И наконец, теория относительности видоизменяет формулу кинетической энергии, так что название это становится условным, сочетая ее с другим понятием: энергией массы. Любой объект обладает энергией уже потому, что он существует. Если электрон и позитрон спокойно стоят рядом, ничем не занимаясь (ни тяготением, ни чем иным), а потом сливаются и исчезают, то освобождается определенная порция энергии излучения, и эту порцию можно подсчитать. Все, что для этого нужно,— это знать массу объекта. Неважно, что это такое — два тела исчезли, определенная энергия появилась. Формулу впервые придумал Эйнштейн: это Е = mc2.
Из наших рассуждений ясно, что закон сохранения энергии незаменим при анализе явления; мы уже показали это на ряде примеров, для которых мы не знали всех формул. Владей мы формулами для всех типов энергии, мы могли бы узнавать, не вдаваясь в детали, сколько процессов происходит в таком-то явлении. Оттого законы сохранения столь важны. Встает естественный вопрос: какие еще есть в физике законы сохранения.
Существуют еще два закона, сходных с законом сохранения энергии. Один называется сохранением импульса (или количества движения). Другой — сохранением момента количества движения. Позже мы подробней познакомимся с ними.
В конечном счете мы не понимаем законов сохранения достаточно глубоко. Нам непонятно сохранение энергии. Мы не можем представить себе энергию как некоторое количество неделимых порций. Вы, вероятно, слышали, что фотоны вылетают порциями и что энергия их равна постоянной Планка, умноженной на частоту. Это правда, но так как частота света может быть любой, то нет никакого закона, по которому энергия обязана иметь некоторую определенную величину. Это уже не кубики Монтигомо Ястребиного Когтя: любые количества энергии допустимы, по крайней мере в настоящее время. Для нас энергия — это не то, что можно пересчитать, а всего лишь математическая величина, абстракция,—обстоятельство довольно странное. В квантовой механике выявляется, что сохраняемость энергии тесно увязана с другим важным свойством мира — с независимостью от абсолютного времени. Мы можем поставить опыт в некоторый момент, а потом еще раз в другой момент; он будет протекать одинаково. Абсолютно ли верно это утверждение или нет — мы не знаем. Но если мы примем, что оно абсолютно верно, и добавим принципы квантовой механики, то из этого можно вывести принцип сохранения энергии. Это довольно тонкая и интересная вещь, которую нелегко пояснить. Другие законы сохранения также связаны между собой: сохранение импульса в квантовой механике — с утверждением, что неважно, где происходит опыт, его итог от этого не меняется. И подобно тому, как независимость от места связана с сохранением импульса, а независимость от времени — с сохранением энергии, точно так же от поворота наших приборов тоже ничего не должно изменяться; независимость от ориентации в пространстве имеет отношение к сохранению момента количества движения.
Кроме этого, существуют еще три закона сохранения; насколько ныне нам известно, они точные и понять их намного легче, так как по своей природе они близки к подсчету кубиков. Первый из них — сохранение заряда; он просто означает, что если подсчитать, сколько есть положительных зарядов, и из этого вычесть количество отрицательных, то число это никогда не изменится. Вы можете избавиться от положительных вместе с отрицательными, но не создадите никогда чистого избытка одних над другими. И прочие два закона похожи на этот. Один называют сохранением числа барионов. Имеется некоторое количество удивительных частиц (примеры: нейтрон и протон), называемых барионами. В любой реакции, где бы в природе она ни происходила, если подсчитать, сколько барионов было в начале процесса (считая антибарион за —1 барион), то в конце их число окажется тем же. Другой закон — сохранение числа лептонов. Группа частиц, называемых лептонами, включает электрон, мюон и нейтрино. Антиэлектрон, т. е. позитрон, считается за —1 лептон. Подсчет общего числа лептонов в реакции обнаруживает, что на входе и на выходе реакции это число одинаково, по крайней мере насколько нам сейчас известно.
Вот вам шесть законов сохранения: три замысловатых, связанных с пространством и временем, а три простых, связанных с обычным счетом.