Читаем Feynmann 1 полностью

А с помощью косвенных измерений (своего рода триангуляции в микроскопическом масштабе) мож­но измерять все меньшие и меньшие объекты. Сначала из наблю­дений отражения света короткой длины волны (рентгеновских лучей) от образца с нанесенными на известном расстоянии мет­ками измеряется длина волны световых колебаний.

Затем по картине рассеяния того же света на кристалле можно опреде­лить относительное расположение в нем атомов, причем резуль­тат хорошо согласуется с данными о расположении атомов, по­лученными химическим путем. Таким способом определяется диаметр атомов (около 10-10 м).

Дальше в шкале расстояний имеется довольно большая неза­полненная «щель» между атомными размерами 10-10 м и в 105 раз меньшими ядерными размерами (около 10-15 м). Для опре­деления ядерных размеров применяются уже совершенно дру­гие методы: измеряется видимая площадь s, или так называемое эффективное поперечное сечение, Если же мы хотим определить радиус, то пользуемся формулой s = pr2, поскольку ядра мо­жно приближенно рассматривать как сферические.

Эффективные сечения ядер можно определить, пропуская пучок частиц высокой энергии через тонкую пластинку вещества и измеряя число частиц, не прошедших сквозь нее. Эти высоко­энергетические частицы прорываются сквозь легкое облачко электронов, но при попадании в тяжелое ядро останавливаются или отклоняются. Предположим, что у нас имеется пластинка толщиной 1 см. На такой толщине укладывается приблизитель­но 108 атомных слоев. Однако ядра настолько малы, что вероят­ность того, что одно ядро закроет другое, очень незначительна. Можно себе представить, что высокоэнергетическая частица, налетающая на пластинку углерода толщиной 1 см, «видит» при­близительно то, что в сильно увеличенном масштабе показано на фиг. 5.10.

Фиг. 5.10. Воображаемая пла­стинка углерода толщиной 1 см при сильном увеличении (если бы были видны только ядра атомов).

Вероятность того, что очень малая частица столкнется с ядром, равна отношению площади, занимаемой ядрами (чер­ные точки), к общей площади рисунка. Пусть над областью с площадью А по всей толщине пластинки находится N атомов (разумеется, каждый с одним ядром). Тогда доля площади, за­крытая ядрами, будет равна Ns/А. Пусть теперь число частиц в нашем пучке до пластинки будет равно n1, а после нее равно n2; тогда доля частиц, не прошедших через пластинку, будет (n1-n2)/n1, что должно быть равно доле площади, занимаемой ядрами. Радиус же ядер вычисляется из равенства

Из таких экспериментов мы находим, что радиусы ядер ле­жат в пределах от 1·10-15 до 6·10-15 м. Кстати, единица длины 10-15 м называется ферми в честь Энрико Ферми (1901—1958).

Что можно ожидать в области еще меньших расстояний? Можно ли их измерять? На этот вопрос пока еще нет ответа. Может быть, именно здесь, в каком-то изменении понятия про­странства или измерения на малых расстояниях, кроется раз­гадка тайны ядерных сил.

Несколько слов о стандарте длины. Разумно в качестве стан­дарта использовать какую-то естественную единицу длины, например радиус Земли или некоторую его долю. Именно та­ким образом возник метр. Первоначально он определялся как (p/2)·10-7 доля радиуса Земли. Однако такое определение нельзя считать ни особенно точным, ни удобным. Поэтому в те­чение долгого времени по международному соглашению в ка­честве эталона метра принималась длина между двумя метками, сделанными на особом брусе, который хранится в специальной лаборатории во Франции. Только много позднее поняли, что и такое определение метра не столь уж точно, как это необходи­мо, и не так уж универсально и постоянно, как этого хотелось бы. Поэтому сейчас принят новый стандарт длины как некото­рое заранее установленное число длин волн определенной спектральной линии.

· · ·

Результаты измерения расстояний и времени зависят от на­блюдателя. Два наблюдателя, движущиеся друг относительно друга, измеряя один и тот же предмет или длительность одно­го и того же процесса, получат разные значения, хотя, каза­лось бы, мерили одно и то же. Расстояния и интервалы време­ни в зависимости от системы координат (т. е. системы отсчета), в которой производят измерения, имеют различную величину. В последующих главах мы будем более подробно разбирать этот вопрос.

Законы природы не позволяют выполнять абсолютно точ­ные измерения расстояний или интервалов времени. Мы уже упоминали ранее, что ошибка в определении положения пред­мета не может быть меньше, чем

где h малая величина, называемая «постоянной Планка», а Dр — ошибка в измерении импульса (массы, умноженной на скорость) этого предмета. Как уже говорилось, эта неопределен­ность в измерении положения связана с волновой природой частиц.

Относительность пространства и времени приводит к тому, что измерения интервалов времени также не могут быть точнее, чем

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука