Читаем Feynmann 1 полностью

Можно показать, что ожидаемая величина D2N равна просто N — числу сделанных шагов. Кстати, под «ожидаемой величи­ной» мы понимаем наиболее вероятное значение (угаданное наилучшим образом), о котором можно думать как об ожидаемом среднем значении большого числа повторяющихся процессов

блуждания. Эта величина обозначается как 2N> и называется, кроме того, «средним квадратом расстояния». После одного

шага D2 всегда равно +1, поэтому, несомненно, <D21> = 1. (За единицу расстояния всюду будет выбираться один шаг, и поэтому я в дальнейшем не буду писать единиц длины).

, Ожидаемая величина D2N для N>1 может быть получена из dn-1. Если после (N-1) шагов мы оказались на расстоянии DN-1, то еще один шаг даст либо DN=DN--1+1, либо DN=DN-1 -1. Или для квадратов

(6.7)

Если процесс повторяется большое число раз, то мы ожидаем, что каждая из этих возможностей осуществляется с вероятно­стью /2, так что средняя ожидаемая величина будет просто средним арифметическим этих значений, т. е. ожидаемая вели­чина D2N будет просто D2N-1+1. Но какова величина D2N_1, вер­нее, какого значения ее мы ожидаем? Просто, по определению, ясно, что это должно быть «среднее ожидаемое значение» 2N-1>, так что

2N>=2N-1+1. (6.8)

Если теперь вспомнить, что 21> = 1, то получается очень простой результат:

<D2N>=N. (6.9)

Отклонение от начального положения можно характеризо­вать величиной типа расстояния (а не квадрата рас­стояния); для этого нужно просто извлечь квадратный корень из <.D2N> и получить так называемое «среднее квадратичное рас­стояние» DC-K:

DC-K2> = ЦN. (6.10)

Мы уже говорили, что случайные блуждания очень похожи на опыт с подбрасыванием монет, с которого мы начали эту главу. Если представить себе, что каждое продвижение вперед или назад обусловливается выпадением «орла» или «решки», то DN будет просто равно No-NP, т. е. разности числа выпа­дений «орла» и «решки». Или поскольку No+Np=N(где N — полное число подбрасываний), то DN= 2No-N. Вспомните, что раньше мы уже получали выражение для ожидаемого рас­пределения величины no [она обозначалась тогда через k; см. уравнение (6.5)]. Ну а поскольку N — просто постоянная, то теперь такое же распределение получил ось и для D. (Выпаде­ние каждого «орла» означает невыпадение «решки», поэтому в связи между no и D появляется множитель 2.) Таким образом, на фиг. 6.2 график представляет одновременно и распределение расстояний, на которые мы можем уйти за 30 случайных шагов k=15 соответствует D = 0, a k = 16 соответствует D= 2 и т. д.).

Отклонение no от ожидаемой величины N/2 будет равно

(6.11)

откуда для среднего квадратичного отклонения получаем

(6.12)

Вспомним теперь наш результат для dc-k. Мы ожидаем, что среднее расстояние, пройденное за 30 шагов, должно быть рав­но V30 = 5,5, откуда среднее отклонение k от 15 должно быть 5,5:2 = 2,8. Заметьте, что средняя полуширина нашей кривой на фиг. 6.2 (т. е. полуширина «колокола» где-то посредине) как раз приблизительно равна 3, что согласуется с этим результатом.

Теперь мы способны рассмотреть вопрос, которого избегали до сих пор. Как узнать, «честна» ли наша монета? Сейчас мы можем, по крайней мере частично, ответить на него. Если мо­нета «честная», то мы ожидаем, что в половине случаев выпадет «орел», т. е.

o>/N = 0,5. (6.13)

Одновременно ожидается, что действительное число выпадений «орла» должно отличаться от N/2 на величину порядка ЦN/2, или, если говорить о доле отклонения, она равна

т. е. чем больше N, тем ближе к половине отношение No/N.

На фиг. 6.6 отложены числа NO/N для тех подбрасываний монеты, о которых мы говорили раньше.

Фиг. 6.6. Доля выпадений «орла» в некоторой частной последовательности N подбрасываний монеты.

Как видите, при уве­личении числа N кривая все ближе и ближе подходит к 0,5. Но, к сожалению, нет никаких гарантий, что для каждой дан­ной серии или комбинации серий наблюдаемое отклонение будет близко к ожидаемому отклонению. Всегда есть конечная веро­ятность, что произойдет большая флуктуация — появление большого числа выпадений «орла» или «решки»,— которая даст произвольно большое отклонение. Единственное, что можно сказать,— это если отклонения близки к ожидаемому 1/2ЦN (скажем, со множителем 2 или 3), то нет оснований считать монету «поддельной» (или что партнер плутует).

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука