Читаем Feynmann 1 полностью

Мы не рассматривали еще случаи, когда для монеты или ка­кого-то другого объекта испытания, подобного монете (в том смысле, что возможны два или несколько достоверно не пред­сказуемых исхода наблюдения, например камень, который мо­жет упасть только на какую-то из двух сторон), имеется дос­таточно оснований полагать, что вероятности разных исходов не равны. Мы определили вероятность Р(O) как отношение o>/N. Но что принять за величину о>? Каким образом можно узнать, что ожидается? Во многих случаях самое луч­шее, что можно сделать, это подсчитать число выпадений «ор­ла» в большой серии испытаний и взять o> =No (наблюден­ное). (Как можно ожидать чего-то еще?) При этом, однако, ну­жно понимать, что различные наблюдатели и различные серии испытаний могут дать другое значение P(О), отличное от нашего. Следует ожидать, однако, что все эти различные ответы не будут расходиться больше чем на 1/2ЦN [если Р(O) близко к половине], Физики-экспериментаторы обычно говорят, что «эксперимен­тально найденная» вероятность имеет «ошибку», и записывают это в виде

(6.14)

При такой записи подразумевается, что существует некая «ис­тинная» вероятность, которую в принципе можно подсчитать, но что различные флуктуации приводят к ошибке при экспери­ментальном ее определении. Однако нет возможности сделать эти рассуждения логически согласованными. Лучше все-таки, чтобы вы поняли, что вероятность в каком-то смысле — вещь субъективная, что она всегда основывается на какой-то неопре­деленности наших познаний и величина ее колеблется при их изменении.

§ 4. Распределение вероятностей

Давайте вернемся к проблеме случайных блужданий, но теперь уже с некоторым изменением. Пусть в дополнение к случайному выбору направления шага (+ или -) некоторым непредсказуемым образом меняется также и его длина, причем требуется выполнение одного-единственного условия, чтобы длина шага в среднем была равна единице. Эта задача уже боль­ше похожа на тепловое движение молекул в газе. Обозначим длину шага через S, которая, вообще говоря, может быть лю­бой, но наиболее часто будет принимать значения где-то «вбли­зи» единицы. Для большей определенности давайте положим 2>=1, или, что эквивалентно, SC-K= 1. Вывод выражения для 2> при этом останется тем же, за исключением того, что уравнение (6.8) изменится теперь следующим образом:

2N>=2N-1>+2>=2N-1>+1. (6.15)

Так что, как и прежде,

2N>=N. (6.16)

Каково же в этом случае будет распределение расстояний! Какова, например, вероятность того, что после 30 шагов D ока­жется равным нулю? Вероятность этого равна нулю! Вообще вероятность любой заданной величины D равна нулю. Действи­тельно, совершенно невероятно, чтобы сумма всех шагов назад (при произвольной длине каждого из них) в точности скомпенсировалась шагами вперед. В этом случае мы уже не можем построить график типа изображенного на фиг. 6.2.

Если же, однако, не требовать, чтобы D было в точности равно, скажем, нулю, или единице, или двум, а вместо этого говорить о вероятности получения D где-то вблизи нуля, или единицы, или двух, то при этом мы можем нарисовать график, подобный приведенному на фиг. 6.2. Назовем Р (х, Dx) вероятностью того, что D будет находиться где-то внутри интервала Dx в окрестности величины х (скажем, где-то между х и х+Dx). Если Ax достаточно мало, то вероятность того, что D попадет в этот интервал, должна быть пропорциональна его ширине, т. е. Ax. Поэтому мы можем утверждать, что

Р (х, Dx)=р(х)Dx;. (6.17)

Функция р(х) называется плотностью вероятности.

Вид кривой р(х) зависит как от числа шагов N, так и от рас­пределения шагов по длинам (т. е. от того, какую долю состав­ляют шаги данной длины). К сожалению, я не могу здесь зани­маться доказательством этого, а только скажу, что при достаточно большом числе шагов N плотность p(х) одинакова для всех разум­ных распределений шагов по длинам и зависит лишь от самого N. На фиг. 6.7 показаны три графика р(х) для различных N.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука