Все формулы, которые мы писали для плоского вращения, могут быть обобщены на три измерения. Если взять, например, твердое тело, вращающееся вокруг некоторой оси с угловой скоростью w, то можно спросить: «Чему равна скорость точки с радиус-вектором r?» В качестве упражнения попытайтесь доказать, что скорость частицы твердого тела задается выражением v=wXr, где w — угловая скорость, а r — положение частицы. Другим примером векторного произведения служит формула для кориолисовой силы, которую можно записать как FK=2mvXw. Иначе говоря, если в системе координат, вращающейся со скоростью w, частица движется со скоростью v и ми все хотим описать через величины этой вращающейся системы, то необходимо добавлять еще псевдосилу fk.
§ 3. Гироскоп
Вернемся теперь снова к закону сохранения момента количества движения. Его можно продемонстрировать с помощью быстро вращающегося колеса, или гироскопа (фиг. 20.1).
Если стать на крутящийся стул и держать вращающееся колесо в горизонтальном положении, то его момент количества движения будет направлен горизонтально. Момент количества движения относительно
Прежде всего давайте более подробно проанализируем явление, которое мы только что описали. Самое удивительное, в чем нам следует разобраться, это откуда берутся силы, раскручивающие нас вместе со стулом, когда мы поворачиваем ось гироскопа вертикально. На фиг. 20.2 показано колесо, быстро вращающееся вокруг оси
В ту же сторону направлен и момент количества движения. Предположим теперь, что мы хотим вращать колесо относительно оси
t=WXL0. (20.15)
Таким образом, если W и l0 направлены горизонтально, как это показано на фигуре, то t направлен
Этот результат можно обобщить на быстро вращающийся волчок. В обычном вращающемся волчке сила тяжести, действующая на его центр масс (ц.м.), создает момент относительно точки соприкосновения волчка с полом (фиг. 20.3).
Этот момент действует в горизонтальном направлении и заставляет волчок прецессировать, т. е. ось его будет описывать круговой конус вокруг вертикальной оси. Если W — угловая скорость прецессии (направленная вертикально), то мы снова находим
Таким образом, если к быстро вращающемуся волчку приложить момент сил, то возникнет прецессия в направлении этого момента, т. е. под прямым углом к силам, создающим момент.