Читаем Feynmann 2 полностью

Совершенно ясно, что для движения одной частицы мы получаем и три уравнения для трех плоскостей. Более того, если мы складывали такие величины, как хру—урх, для многих частиц и называли это полным угловым моментом, то теперь у нас есть три сорта подобных выражений для трех плос­костей: ху, yz и zx, а сделав то же самое с моментами сил, мы можем также говорить и о полных моментах сил в этих плос­костях. Таким образом, появляются законы о том, что внешний момент сил в некоторой плоскости равен скорости изменения углового момента в той же плоскости. Это просто обобщение того, что писалось для двух измерений.

Однако теперь можно сказать: «Но ведь есть еще и другие плоскости. Разве нельзя в конце концов взять плоскость под каким-то углом и вычислять действующие в ней моменты сил. Для каждого такого случая нужно писать другие системы уравнений, так что в результате их наберется масса!» Здесь следует отметить очень интересное обстоятельство. Оказыва­ется, что если мы в комбинации x'Fy'-y'Fx' для «косой» плос­кости выразим величины x', Fy' и т. д. через их компоненты, то результат можно записать в виде некоторой комбинации трех моментов в плоскостях ху, yz и zx. В этом нет ничего но­вого. Другими словами, если нам известны три момента сил в плоскостях ху, yz и zx, то момент сил в любой другой плоскости, как и угловой момент, может быть записан в виде их комби­нации: скажем, 6% одного, 92% другого и т. д. Этим свойством мы сейчас и займемся.

Пусть Джо для своих координатных осей х, у, z определял все моменты сил и все угловые моменты во всех плоскостях. Однако Мик направил свои оси х', у', z' по-другому. Чтобы немного облегчить задачу, предположим, что повернуты только оси x и y. Мик выбрал другие оси х' и у', а его ось z осталась той же самой. Это означает, что плоскости yz и zx у него новые, а поэтому моменты сил и угловые моменты у него тоже окажутся новыми. Например, его момент сил в плоскости х'у' окажется равным

x'Fy'-y'Fx' и т. д. Следующая задача — найти связь между новыми и старыми моментами сил. Ее вполне можно ре­шить, установив связь одного набора осей с другим. «Да это же напоминает то, что мы делали с векторами»,— скажете вы. Действительно, я собираюсь делать в точности то же самое. «А не вектор ли он, этот момент сил?» спросите вы. Действительно, он — вектор, однако этого нельзя сказать просто так, без всякого математического анализа. Так что следующим этапом должен быть анализ. Однако мы не будем подробно обсуждать каждый шаг, а только покажем, как это все работает. Моменты сил, вычисленные Джо, равны

В этом месте мы сделаем отступление и заметим, что в подоб­ных случаях, если оси координат выбраны неправильно, для некоторых величин получается неверный знак. Почему бы не написать tyz=zFy-yFz? Этот вопрос связан с тем обстоятель­ством, что система координат может быть либо «левая», либо «правая». Однако выбрав (произвольно) знак, скажем, у txy , можно всегда определить правильное выражение для остальных двух величин путем замены по какой-либо из двух схем:

Теперь Мик подсчитывает моменты сил в своей системе.

Пусть одна система координат повернута на угол q по отноше­нию к другой, так что ось z осталась той же самой. (Угол q ничего не имеет общего с вращением объекта или с чем-то про­исходящим внутри системы координат. Это просто связь меж­ду осями, используемыми одним человеком, и осями, исполь­зуемыми другим. Мы предполагаем, что он остается постоян­ным.) При этом координаты в двух системах связаны так:

x'=xcosq+ysinq,

y'=уcosq-хsinq, (20.3)

z'=z.

Точно таким же образом, поскольку сила является вектором, она преобразуется в новой системе координат так же, как х, у и z. Просто, по определению, объект называется вектором тогда и только тогда, когда различные его компоненты преобра­зуются как х, у и z

Теперь можно определить, как преобразуется момент силы. Для этого в уравнение (20.2) нужно просто подставить вместо х', у' и z' выражение (20.3), а для Fx' , Fy', и Fz'-выражение (20.4). В результате для tx'y' получается длинный ряд членов, но оказывается (и на первый взгляд это удивительно), что все сводится просто к выражению xFy-yFx, которое, как известно, является моментом силы в плоскости ху:

Результат совершенно ясен: ведь мы только повернули оси, лежащие в плоскости ху, при этом момент относительно оси z в этой плоскости не отличается от прежнего: ведь плоскость-то осталась той же самой! Более интересно выражение для tV'Z' . Здесь уже мы имеем дело с новой плоскостью. Если теперь повторить то же самое с плоскостью y'z', то получим

И наконец, для плоскости z'x'

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука