Читаем Feynmann 2 полностью

Очень интересным примером замедления времени при дви­жении снабжают нас мю-мезоны (мюоны) — частицы, которые в среднем через 2,2·10-6 сек самопроизвольно распадаются. Они приходят на Землю с космическими лучами, но могут быть созданы и искусственно в лаборатории. Часть космических мюонов распадается еще на большой высоте, а остальные — только после того, как остановятся в веществе. Ясно, что при таком кратком времени жизни мюон не может пройти больше 600 м, даже если он будет двигаться со скоростью света. Но хотя мюоны возникают на верхних границах атмосферы, при­мерно на высоте 10 км и выше, их все-таки обнаруживают в земных лабораториях среди космических лучей. Как это может быть? Ответ состоит в том, что разные мюоны летят с различными скоростями, иногда довольно близкими к скорости света. С их собственной точки зрения они живут всего лишь око­ло 2 мксек, с нашей же — их жизненный путь несравненно более долог, достаточно долог, чтобы достигнуть поверхности Земли. Их жизнь удлиняется в 1/Ц(1-u2/c2) раз. Среднее время жизни мюонов разных скоростей было точно измерено, причем полу­ченное значение хорошо согласуется с формулой.

Мы не знаем, почему мезон распадается и каков его внут­ренний механизм, но зато мы знаем, что его поведение удов­летворяет принципу относительности. Тем и полезен этот принцип — он позволяет делать предсказания даже о тех вещах, о которых другим путем мы мало чего узнаем. К при­меру, еще не имея никакого представления о причинах распада мезона, мы все же можем предсказать, что если его скорость со­ставит 9/10 скорости света, то кажущаяся продолжительность отведенного ему срока жизни будет равна 2,2 · 10-6/Ц(1-92/102) сек. И это предсказание оправдывается. Правда, неплохо?

§ 5. Лоренцево сокращение

Теперь мы вернемся к преобразованию Лоренца (15.3) и попытаемся лучше понять связь между системами координат (х, у, z, t) и (х', у', z', t'). Будем называть их системами S и S', или соответственно системами Джо и Мика. Мы уже отметили, что первое уравнение основывается на предположении Лоренца о том, что по направлению х все тела сжимаются. Как же можно доказать, что такое сокращение действительно бывает? Мы уже понимаем, что в опыте Майкельсона — Морли по принципу относительности поперечное плечо ВС не может сократиться; в то же время нулевой результат опыта требует,

чтобы времена были равны. Чтобы получился такой результат, приходится допустить, что продольное плечо BE кажется сжатым в отношении Ц(1-и22). Что означает это сокращение на языке Джо и Мика? Положим, что Мик, двигаясь с системой S' в направлении х', измеряет метровой линейкой координату х' в некоторой точке. Он прикладывает линейку х' раз и ду­мает, что расстояние равно х' метрам. С точки же зрения Джо, (в системе S) линейка у Мика в руках укорочена, а «на самом деле» отмеренное им расстояние равно x'Ц(1-u22) метров. Поэтому если система S' удалилась от системы S на расстояние ut, то наблюдатель в системе S должен сказать, что эта точка (в его координатах) удалена от начала на x=x'Ц(1-u2/c2)+ut, или

Это и есть первое уравнение из преобразований Лоренца.

§ 6. Одновременность

Подобным же образом из-за различия в масштабах времени появляется и знаменатель в уравнении (15.Зг) в преобразо­ваниях Лоренца. Самое интересное в этом уравнении — это новый и неожиданный член в числителе, член ux2. В чем его смысл? Внимательно вдумавшись в положение вещей, можно понять, что события, происходящие, по мнению Мика (на­блюдателя в системе S'), в разных местах одновременно, с точки зрения Джо (в системе S), вовсе не одновременны. Когда одно событие случилось в точке x1 в момент t0, а другое — в точке х2 в тот же момент t0, то соответствующие моменты t1 и t2 отличаются на

Это явление можно назвать «нарушением одновременности удаленных событий». Чтобы пояснить его, рассмотрим сле­дующий опыт.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука