Одна из разновидностей дифракционных решеток представляет собой обычную стеклянную пластинку, прозрачную и бесцветную, с нацарапанными на ней штрихами. Число штрихов на 1 мм зачастую достигает нескольких сотен, а расстояние между ними выдерживается с большой точностью. Действие такой решетки можно наблюдать, посылая сквозь нее с помощью проектора узкую вертикальную полоску света (изображение щели) на экран. Помещая решетку на пути света так, чтобы штрихи были расположены вертикально, мы увидим на экране ту же самую полоску света, но по сторонам от нее, кроме того, будут и другие полосы, окрашенные в разные цвета. Разумеется, мы получили не что иное, как уширенное изображение щели; угол 6 в (30.6) зависит от l, и разная окраска света, как мы знаем, соответствует разным частотам и разным длинам волн. Самой большой видимой длиной волны обладает красный свет; в силу условия dsinq=l ему соответствует наибольшее q. И мы действительно обнаруживаем, что на экране красная полоса лежит дальше всех от центра изображения! С другой стороны должна быть такая же полоса; и в самом деле, мы видим на экране вторую полосу. Выражение (30.6) имеет еще одно решение с т =2. На соответствующем ему месте на экране видно какое-то расплывчатое слабое пятно, а дальше в сторону чуть заметен еще целый ряд слабых полосок.
Только что мы сказали, что максимумы всех порядков должны иметь одинаковую интенсивность, а у нас интенсивность получается разная, и, более того, правый и левый максимумы первого порядка отличаются по своей яркости! Причина здесь кроется в том, что решетки изготовляются особым способом, чтобы как раз и получался подобный эффект. Как это делается? Если бы дифракционные решетки имели бесконечно тонкие штрихи, расположенные на строго равном расстоянии друг от друга, то интенсивности максимумов всех порядков были бы одинаковы. Но фактически, хотя мы пока разобрали только простейший случай, мы могли бы также взять систему, состоящую из пар антенн, причем в каждой паре установили бы определенную разность фаз и интенсивности. Тогда можно было бы получить разную интенсивность у максимумов разных порядков. На дифракционную решетку часто наносят не ровные, а пилообразные штрихи. Специально подбирая форму «зубцов», можно увеличить интенсивность спектра данного порядка по отношению к остальным. В практической работе с решетками желательно иметь максимальную яркость в одном из порядков. Мы отложим пока весьма сложное объяснение этих фактов, скажем только, что такие решетки оказываются гораздо более полезными в применениях.
До сих пор мы рассматривали случай, когда фазы всех источников равны. Однако полученная нами формула (30.3) годится также и тогда, когда сдвиг фаз j каждого источника по сравнению с предыдущим постоянен и равен а. Это означает, что антенны должны быть соединены по схеме, обеспечивающей небольшой сдвиг фазы между ними. Можно ли создать подобное устройство для света? Да, и очень просто. Пусть источник света находится на бесконечности и свет падает на решетку под некоторым углом, равным qвх (фиг. 30.4); рассмотрим рассеянный пучок света, выходящий под углом qВЫХ (qвых — это наш старый угол q, а qвх нужен для создания разности фаз у источников).
Фиг. 30.4. Разность хода двух лучей, отраженных соседними линиями решетки, равна
dsinqвых — dsinqвх.
Пучок света от бесконечно удаленного источника падает сначала на первый штрих, затем на второй и т. д., сдвиг фазы света, попадающего на два соседних штриха, есть a = - dsinqВХ/l. Отсюда получаем формулу для дифракции света, падающего на решетку под некоторым углом:
(30.7)
Попытаемся найти направление максимальной интенсивности в этом случае. Условие возникновения максимума по-прежнему состоит в том, что j должно быть числом, кратным 2p. Здесь следует отметить несколько интересных моментов.
Прежде всего, рассмотрим весьма интересный случай, соответствующий m=0; когда d меньше l, тогда m=0 и других решений не возникает. Тогда получаем sinqвх = sinqвых,
т. е. рассеянный луч выходит в том же направлении, что и первоначальный луч, падающий на дифракционную решетку. Но не следует думать, что свет просто «проходит насквозь». Мы ведь говорим о других лучах. Свет, проходящий насквозь, идет от первоначального источника, а мы имеем в виду свет, возникающий при рассеянии. Получается так, что рассеянный пучок света идет в том же направлении, что и первоначальный; более того, оба пучка могут интерферировать друг с другом, о чем мы расскажем в последующих главах.