Читаем Feynmann 3 полностью

Одна из разновидностей дифракционных решеток представ­ляет собой обычную стеклянную пластинку, прозрачную и бес­цветную, с нацарапанными на ней штрихами. Число штрихов на 1 мм зачастую достигает нескольких сотен, а расстояние между ними выдерживается с большой точностью. Действие такой решетки можно наблюдать, посылая сквозь нее с помощью про­ектора узкую вертикальную полоску света (изображение щели) на экран. Помещая решетку на пути света так, чтобы штрихи были расположены вертикально, мы увидим на экране ту же самую полоску света, но по сторонам от нее, кроме того, будут и другие полосы, окрашенные в разные цвета. Разумеется, мы получили не что иное, как уширенное изображение щели; угол 6 в (30.6) зависит от l, и разная окраска света, как мы знаем, соответствует разным частотам и разным длинам волн. Самой большой видимой длиной волны обладает красный свет; в силу условия dsinq=l ему соответствует наибольшее q. И мы дей­ствительно обнаруживаем, что на экране красная полоса лежит дальше всех от центра изображения! С другой стороны должна быть такая же полоса; и в самом деле, мы видим на экране вторую полосу. Выражение (30.6) имеет еще одно решение с т =2. На соответствующем ему месте на экране видно какое-то рас­плывчатое слабое пятно, а дальше в сторону чуть заметен еще целый ряд слабых полосок.

Только что мы сказали, что максимумы всех порядков долж­ны иметь одинаковую интенсивность, а у нас интенсивность получается разная, и, более того, правый и левый максимумы первого порядка отличаются по своей яркости! Причина здесь кроется в том, что решетки изготовляются особым способом, чтобы как раз и получался подобный эффект. Как это делается? Если бы дифракционные решетки имели бесконечно тонкие штри­хи, расположенные на строго равном расстоянии друг от друга, то интенсивности максимумов всех порядков были бы одинако­вы. Но фактически, хотя мы пока разобрали только простейший случай, мы могли бы также взять систему, состоящую из пар антенн, причем в каждой паре установили бы определенную раз­ность фаз и интенсивности. Тогда можно было бы получить раз­ную интенсивность у максимумов разных порядков. На дифрак­ционную решетку часто наносят не ровные, а пилообразные штрихи. Специально подбирая форму «зубцов», можно увели­чить интенсивность спектра данного порядка по отношению к остальным. В практической работе с решетками желательно иметь максимальную яркость в одном из порядков. Мы отло­жим пока весьма сложное объяснение этих фактов, скажем только, что такие решетки оказываются гораздо более полез­ными в применениях.

До сих пор мы рассматривали случай, когда фазы всех источ­ников равны. Однако полученная нами формула (30.3) годится также и тогда, когда сдвиг фаз j каждого источника по срав­нению с предыдущим постоянен и равен а. Это означает, что антенны должны быть соединены по схеме, обеспечивающей небольшой сдвиг фазы между ними. Можно ли создать подобное устройство для света? Да, и очень просто. Пусть источник света находится на бесконечности и свет падает на решетку под не­которым углом, равным qвх (фиг. 30.4); рассмотрим рассеянный пучок света, выходящий под углом qВЫХ (qвых — это наш старый угол q, а qвх нужен для создания разности фаз у источников).

Фиг. 30.4. Разность хода двух лучей, отраженных соседними ли­ниями решетки, равна

dsinqвых — dsinqвх.

Пучок света от бесконечно удаленного источника падает сначала на первый штрих, затем на второй и т. д., сдвиг фазы света, по­падающего на два соседних штриха, есть a = - dsinqВХ/l. Отсюда получаем формулу для дифракции света, падающего на решетку под некоторым углом:

(30.7)

Попытаемся найти направление максимальной интенсивности в этом случае. Условие возникновения максимума по-прежнему состоит в том, что j должно быть числом, кратным 2p. Здесь следует отметить несколько интересных моментов.

Прежде всего, рассмотрим весьма интересный случай, соот­ветствующий m=0; когда d меньше l, тогда m=0 и других ре­шений не возникает. Тогда получаем sinqвх = sinqвых,

т. е. рассеянный луч выходит в том же направлении, что и перво­начальный луч, падающий на дифракционную решетку. Но не следует думать, что свет просто «проходит насквозь». Мы ведь говорим о других лучах. Свет, проходящий насквозь, идет от первоначального источника, а мы имеем в виду свет, возникающий при рассеянии. Получается так, что рассеянный пу­чок света идет в том же направлении, что и первоначальный; более того, оба пучка могут интерферировать друг с другом, о чем мы расскажем в последующих главах.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука