В нашем случае имеется еще одно возможное решение. При заданном qвх угол qвых может быть равен
Так мы подходим к пониманию основного механизма процесса отражения: падающий свет возбуждает движение атомов отражающего тела, а оно в свою очередь генерирует
Перейдем теперь к особому случаю, когда d®0. Имеется, скажем, плотное тело конечных размеров. Потребуем еще, чтобы разность фаз между соседними рассеивателями стремилась к нулю. Иначе говоря, будем ставить все новые и новые антенны в промежутках между прежними, так что разности фаз будут становиться все меньше по мере уменьшения расстояния до соседних антенн, но общее число антенн пусть растет так, что полная разность фаз между первой и последней антенной остается постоянной. Посмотрим, как видоизменится формула (30.3), если полная разность фаз n
(30.8)
На фиг. 30.2 показан ход этой предельной зависимости.
В данном случае дифракционная картина в общих чертах получается такой же, как и для конечного промежутка d>l, те же боковые максимумы, нет только максимумов высших порядков. Когда все рассеиватели находятся в фазе, возникает максимум в направлении qвых =0 и минимум при D =l, в точности как для конечных d и n.
Для примера возьмем длинную линию, составленную из осцилляторов, которые колеблются вдоль нее (фиг. 30.5). Такое устройство дает максимальную интенсивность в направлении, перпендикулярном нити. Кверху и книзу от экваториальной плоскости имеется небольшая интенсивность, но она очень мала. Пользуясь этим результатом, перейдем к более сложному устройству. Предположим, у нас имеется целый набор нитей, каждая из которых излучает в экваториальной плоскости. Если мы находимся в центральной плоскости, перпендикулярной всем проволокам, интенсивность излучения набора длинных линий в разных направлениях определяется так же, как и в случае бесконечно коротких линий,— нужно сложить вклады от всех длинных проволок.
Фиг. 30.5. Распределение интенсивности излучения непрерывной линии осцилляторов имеет высокий центральный максимум и многочисленные слабые боковые максимумы.
Вот почему вместо крошечных решеток — антенн, которые мы рассматривали, можно было бы использовать решетки с длинными и узкими щелями. Каждая из длинных щелей излучает в своем собственном направлении не вверх и не вниз, а только перпендикулярно щели, и, поставив их рядом друг с другом в горизонтальной плоскости, мы получим интерференцию.
Таким образом, можно создать еще более сложные устройства, размещая рассеиватели по линии, в плоскости или в пространстве. Сначала мы располагали рассеиватели на линии, а затем проанализировали случай, когда они заполняют полосу; для получения ответа каждый раз нужно было просуммировать вклады отдельных рассеивателей. Последний принцип справедлив во всех случаях.
§ 3. Разрешающая способность дифракционной решетки
Теперь мы способны понять еще ряд интересных явлений. Например, попробуем использовать решетку для определения длины волны света. На экране изображение щели развертывается в целый спектр линий, поэтому с помощью дифракционной решетки можно разделить свет по составляющим его длинам волн.
Возникает интересный вопрос: предположим, что имеются два источника с несколько разными частотами излучения или несколько разными длинами волн; насколько близкими должны быть эти частоты, чтобы по дифракционной картине нельзя было отделить одну частоту от другой? Красные и синие линии четко различаются. А вот если один луч красный, а другой чуть-чуть покраснее, самую малость. Насколько близки они должны быть? Ответ дается величиной, которая называется