Другими словами, мы предсказываем, что показатель преломления для перехода из одного материала в другой можно получить из показателей преломления каждого материала по отношению к некоторой среде, скажем воздуху или вакууму. Таким образом, измерив скорость света во всех средах, мы образуем одно число для каждой среды — показатель преломления для перехода из вакуума в среду — и называем его ni (например, ni для воздуха есть отношение скорости в воздухе к скорости в вакууме и т. д.), после чего легко написать нужную формулу. Показатель преломления для любых двух материалов i и j равен
(26.6)
Используя только закон Снелла, подобное соотношение предсказать невозможно. Но связь эта существует. Соотношение (26.5) известно давно и послужило сильным аргументом в пользу принципа наименьшего времени.
Еще одно предсказание принципа наименьшего времени состоит в том, что скорость света в воде при измерении должна оказаться меньше скорости света в воздухе. Это уже предсказание совсем другого рода. Оно гораздо глубже, потому что носит теоретический характер и никак не связано с наблюдениями, из которых Ферма вывел принцип наименьшего времени (до сих пор мы имели дело только с углами). Как оказалось, скорость света в воде действительно меньше скорости в воздухе, и ровно настолько, чтобы получился правильный показатель преломления.
§ 5, Более точная формулировка принципа Ферма
До сих пор мы фактически пользовались неправильной формулировкой принципа наименьшего времени. Здесь мы сформулируем его более точно. Мы неправильно называли его принципом наименьшего времени и для удобства по ходу дела применяли неправильную его трактовку. Но теперь мы выясним точное содержание принципа. Пусть имеется зеркало. Мы его показали на
фиг. 26.3. Откуда свет знает, что он должен двигаться к зеркалу? Очевидно, путь, требующий наименьшего времени,— это линия АВ, Кое-кто поэтому может сказать: «Иногда этот путь требует как раз наибольшего времени». Так это неправильно! Путь по кривой наверняка займет еще больше времени! Точная формулировка принципа следующая: луч, проходящий по траектории, обладает тем свойством, что любое малое изменение пути (скажем, на 1%), расположения точки падения луча на зеркало, или формы кривой, или какие-либо иные изменения, не приводит в первом порядке к изменению времени прохождения; изменение времени происходит только во втором порядке. Другими словами, согласно этому принципу, свет выбирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения.
С принципом наименьшего времени связана еще одна трудность, которую многие, не любящие такого рода теории, никак не могут переварить. Теория Снелла помогает легко «понять» поведение света. Свет проходит, видит перед собой поверхность и отклоняется, потому что на поверхности с ним что-то происходит. Легко понять идею причинности, проявляющуюся в том, что свет идет из одной точки в другую, а затем в следующую. Но принцип наименьшего времени есть философский принцип, который совсем иначе объясняет причину явлений в природе. Вместо причинной обусловленности, когда из одного нашего действия вытекает другое и т. д., этот принцип говорит следующее: в данной ситуации свет выбирает путь с наименьшим, или экстремальным временем. Но как удается свету выбирать свой
Фиг. 26.13, Прохождение радиоволн сквозь узкую щель.