Направление вектора смещения электрона а в зависимости от восприимчивости осциллятора к действующей на него силе не обязательно совпадает с направлением силы qеЕ, но тем не менее оба вектора вращаются одновременно друг с другом. Напряженность поля Е, вообще говоря, имеет компоненту, перпендикулярную смещению электрона а, так что над системой совершается работа, а кроме того на нее действует крутящий момент т.. Работа, которую он совершает в 1 сек, равна tw. За период Т системе передается энергия twТ, причем tТ есть момент количества движения, поглощаемый вместе с энергией излучения. Мы видим, таким образом, что луч света правой круговой поляризации, энергия которого равна о, переносит момент количества движения (вектор которого лежит вдоль направления распространения луча), равный по величине о /w. Действительно, если луч правополяризованного света поглощается веществом, поглотителю передается порция момента количества движения, равная о/w. Левополяризованный свет несет момент противоположного знака, т. е. - о /w.
Глава 34
§ 1, Движущиеся источники
§ 2, Определение „кажущегося" движения
§ 3. Синхротронное излучение
§ 4. Космическое синхротронное излучение
§ 5. Тормозное излучение
§ 6. Эффект Допплера
§ 7. Четырех» вектор (ω, k)
§ 8. Аберрация
§ 9. Импульс световой волны
§ 1. Движущиеся гюточиики
В этой главе мы расскажем еще о ряде эффектов, связанных с излучением, и на этом закончим изложение классической теории света. Проведенный нами в предыдущих главах анализ световых явлений был достаточно полным и подробным. Однако мы не коснулись одного важного в приложениях процесса электромагнитного излучения — мы не исследовали поведения радиоволн в ящике с отражающими стенками размером порядка длины волны или радиоволн, пропускаемых через длинную трубу. Явления, возникающие в так называемых полых резонаторах и волноводах, мы обсудим позднее, причем прежде мы их проиллюстрируем на другом физическом примере — на примере звука. А в остальном изучение классической теории света заканчивается этой главой.
Для всех эффектов, о которых здесь пойдет речь, характерно то, что они связаны с движением источника. Мы не будем больше предполагать, что смещение источника незначительно и его движение происходит с относительно малой скоростью возле фиксированной точки.
Вспомним, что, согласно основным законам электродинамики, электрическое поле на больших расстояниях от движущегося заряда дается формулой
(34.1)
Определяющей величиной здесь является вторая производная единичного вектора ед' , направленного к кажущемуся положению заряда. Единичный вектор характеризует положение заряда, конечно, не в тот же момент времени,
а то место, где находился бы заряд, если учесть конечную скорость передачи информации от заряда к наблюдателю.
Вместе с электрическим полем возникает магнитное поле, направленное всегда перпендикулярно электрическому и кажущемуся положению заряда. Оно дается формулой
(34.2)
Мы рассматривали до сих пор случай нерелятивистских скоростей, когда движением в направлении источника можно было пренебречь. Обратимся теперь к общему случаю произвольных скоростей и посмотрим, какие эффекты возникают в этих условиях. Итак, пусть движение происходит с любой скоростью, но расстояние от детектора до источника по-прежнему велико.
В гл. 28 мы уже говорили, что в производную d2eR' '/dt2 входит только изменение направления еR'. Пусть заряд находится в точке с координатами (х, у, z) и ось z лежит вдоль линии наблюдения (фиг. 34.1). В данный момент времени т координаты заряда есть x(т), y(т) и z(т)- Расстояние R с большой точностью равно .R(т) = r0 + z(т). Направление вектора еR' зависит главным образом от х и у и почти совсем не зависит от z. Поперечные компоненты единичного вектора равны x/R и y/R; дифференцируя их, мы получаем члены, содержащие R2 в знаменателе:
Таким образом, на достаточно больших расстояниях существенны только члены с производными х и у. Отсюда
(34.3)
где R0 примерно равно расстоянию до заряда q; определим его как расстояние ОР до начала координат (х, у, z). Итак, электрическое поле равно константе, умноженной на очень простую величину — производную координат х и у по t. (Математически можно назвать их поперечными компонентами вектора положения заряда r, но ясности от этого не прибавится.)