Раз уж мы начали говорить о теории относительности, приведем еще и третий способ доказательства, который покажется, пожалуй, более общим. (Суть дела остается прежней, ибо не играет роли,
(34.15)
Для неподвижного наблюдателя волна имеет вид cos(cot-
Произведя перегруппировку членов, получим
(34.16)
Мы снова получим волну в виде косинуса с частотой w' в качестве коэффициента при t' и некоторой другой константой k' — коэффициентом при х'. Назовем k' (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким образом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами
(34.17)
(34.18)
Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений.
§ 7. Четырехвектор (w, k)
Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота w' линейно связана со старой частотой w и старым волновым числом k, а новое волновое число представляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоянием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с преобразованиями Лоренца для координаты и времени: если со сопоставить с t, a k с х/с2, то новое w' сопоставляется с t', a k' — с координатой х'/с2. Иначе говоря, при преобразовании Лоренца w и k изменяются так же, как t и х. Эти величины w и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координаты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, со и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.
Пусть задана система координат х, у, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть К, а направление распространения волны не совпадает ни с одной осью координат.
Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos (a>t-ks), где k = 2п/X a s (расстояние вдоль направления движения волны) — проекция вектора положения на направление движения. Запишем это следующим образом: пусть r есть вектор точки в пространстве, тогда s есть г-еk, где ek — единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r-ek), проекции расстояния на направление движения. Следовательно, наша волна описывается формулой cos(wt-kek·r).
Оказывается очень удобным ввести вектор k, называемый волновым вектором', величина его равна волновому числу 2p/l, а направление совпадает с направлением распространения волны
(34.19)
Благодаря введению этого вектора волна приобретает вид cos(wt-k·r), или cos(wt-kxx-kyy-kzz). Выясним смысл проекций k, например kx. Очевидно, kx есть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла a между осью х и направлением движения истинной волны:
(34.20)
Следовательно, скорость изменения фазы, обратно пропорциональная Xх, в направлении х оказывается меньше на множитель cos а; но этот же множитель содержит и kx, равный модулю k, умноженному на косинус угла между k и осью х!
Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины со, kx, ky, kz преобразуются в теории относительности как четырехвектор, причем со соответствует времени, a kx, ky, kz соответствуют х, у и z и компонентам четырехвектора.