Еще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно составить релятивистское штрихованное произведение. Взяв вектор положения xm (где m, нумерует четыре компоненты — время и три пространственные) и волновой вектор km (где и. снова пробегает четыре значения), образуем штрихованное произведение хm и km , записываемое в виде S'km хm. Это произведение есть инвариант, не зависящий от выбора системы координат. Согласно определению штрихованного произведения,
можно записать S'km хm. следующем виде:
(34.21)
Поскольку km есть четырехвектор, то, как мы уже знаем, Skmxm есть инвариант по отношению к преобразованиям Лоренца. Под знак косинуса в нашей формуле для плоской волны входит именно это произведение, и оно обязано быть инвариантом относительно преобразований Лоренца. У нас не может появиться формула, у которой под знаком косинуса стоит неинвариантная величина, потому что мы знаем, что значение фазы не зависит от выбора системы координат.
§ 8. Аберрация
При выводе формул (34.17) и (34.18) мы взяли простой пример, когда k лежит в направлении движения системы координат; но мы можем обобщить теперь эти формулы на другие возможные случаи. Пусть источник посылает луч света в определенном направлении; это направление фиксируется неподвижным наблюдателем, а мы движемся, скажем, по поверхности Земли в горизонтальном направлении (фиг. 34.12,а). В каком направлении падает луч света с нашей точки зрения? Можно получить ответ, записав четыре компоненты kм и совершив преобразования Лоренца. Но можно воспользоваться и следующим рассуждением: чтобы увидеть луч, следует наш телескоп повернуть на некоторый угол (фиг. 34.12, б). Почему? Потому что свет падает сверху со скоростью с, а мы движемся горизонтально со скоростью у, и свет пройдет «прямо» через телескоп, если последний наклонить на некоторый угол. Легко понять, что расстояние по горизонтали равно vt, а по вертикали ct, и, обозначив угол наклона через q', мы получим tgq'=v/c. Замечательно! В самом деле, замечательно, если бы не одна маленькая деталь: q' не есть тот угол, под которым надо установить телескоп по отношению к поверх
Горизонтальное расстояние, которое мы считали равным
(34.22)
что эквивалентно
(34.23)
Полезно вам самим получить это соотношение с помощью преобразования Лоренца.
Описанный выше эффект кажущегося изменения направления луча называется
§ 9. Импульс световой волны
Займемся теперь другим вопросом. В прошлых главах мы ни разу не говорили о
Магнитное поле направлено перпендикулярно электрическому. Электрическое поле, воздействуя на заряд, заставляет его раскачиваться вверх и вниз, а как действует магнитное поле? Магнитное поле действует только на движущийся заряд (пусть это будет, например, электрон); но электрон действительно движется, ведь он разгоняется электрическим полем, следовательно, оба поля действуют совместно. Двигаясь вверх и вниз с некоторой скоростью, электрон испытывает действие силы, равной по величине произведению