Ну что ж, ничего неожиданного в них нет! Кривая P'1 вышла похожей на кривую P1, которая получалась, когда отверстие 2 закрывали, а кривая P'2 похожа на то, что мы получали, когда закрывали отверстие 1. Итак, никаких блужданий от дырки к дырке не существует. Когда мы следим за электронами, то оказывается, что они проникают сквозь стенку со щелями в точности так, как мы ожидали. Закрыты ли отверстия или открыты, все равно те электроны, которые мы видели проникающими сквозь отверстие 1, распределены одинаково.
Но погодите! Какова же теперь полная вероятность — вероятность того, что электрон попал в детектор любым путем? У нас уже есть сведения об этом. Сделаем вид, что мы не замечали световых вспышек, т. е. сложим палочки, стоящие в обеих колонках. Нам нужно только сложить числа. Для вероятности того, что электрон попал в поглотитель, пройдя через любое из отверстий, мы действительно получим Р'12 = P1+P2. Выходит, что, хоть нам и удалось проследить, через какое отверстие проходят электроны, никакой прежней интерференционной кривой P12 не вышло, получилась новая кривая Р'12 — кривая без интерференции! А выключите свет — и снова возникнет Р12.
Мы приходим к заключению, что, когда мы смотрим на электроны, распределение их на экране совсем не такое, как тогда, когда на них не смотрят. Уж не от включения ли света меняется ход событий? Должно быть, электроны — вещь очень деликатная; свет, рассеиваясь на электронах, толкает их и меняет их движение. Мы ведь знаем, что электрическое поле, действуя на заряд, прилагает к нему силу. От этого, по-видимому, и следует ожидать изменения движения. Во всяком случае, свет оказывает на электроны большое влияние. Пытаясь «проследить» за электронами, мы изменили их движение. Толчки, испытываемые электронами при рассеянии фотонов, очевидно, таковы, что движение электронов сильно изменяется: электрон, который прежде мог попасть в максимум P12 , теперь приземляется в минимуме Р12; вот поэтому никакой интерференции и не заметно.
«Но к чему же такой яркий источник света? — можете вы подумать.— Сбавьте яркость! Световые волны ослабнут и не смогут так сильно возмущать электроны; ослабляя свет все больше и больше, можно в принципе добиться того, что воздействием света на электрон можно будет вообще пренебречь». Будь по-вашему. Давайте попробуем.
Первое, что мы замечаем, это что блеск света, рассеянного на электронах, не слабеет. Сила вспышек остается прежней. От того, что свет стал тускнеть, изменилось лишь одно: временами, услышав щелчок детектора, мы никакой вспышки не замечаем; электрон прошел незамеченным. Мы просто обнаруживаем, что свет ведет себя так же, как электроны: мы знаем, что он «волнист», а теперь убеждаемся, что он к тому же распространяется «порциями». Он доставляется—или рассеивается — порциями, которые мы называем «фотонами». Понижая интенсивность источника света, мы не меняем величины фотонов, а меняем только темп, с каким они испускаются. Этим и объясняется, почему при притушенном свете некоторые электроны проскальзывают к детектору незаметно. Просто как раз в тот момент, когда электрон двигался к детектору, фотона в нужном месте не оказалось.
Все это немного нас обескураживает. Если правильно, что всякий раз, когда мы «видим» электрон, получаются одинаковые вспышки, то все увиденные нами до сего времени электроны были возмущенными электронами. Давайте тогда опыт с тусклым светом проведем иначе. Теперь, услышав щелчок в детекторе, мы будем ставить палочку в одну из трех колонок: в первую, если электрон замечен у отверстия 1, во вторую, если его видели у отверстия 2, и в третью, если его вообще не видели. Обработав данные (рассчитав вероятности), мы получим следующие результаты: «виденные у отверстия 1» будут распределены по закону P'1 , «виденные у отверстия 2» — по закону Р'2 (так что «виденные либо у отверстия 1, либо у отверстия 2» распределяются по закону P'12), а «незамеченные» распределены «волноподобно», как Р12 на фиг. 37.3! Если электроны не видимы, возникает интерференция!
Это уже можно понять. Когда мы не видим электрон, значит, фотон не возмутил его; а если уж мы его заметили, значит, он возмущен фотоном. Степень возмущения всегда одна и та же, потому что все фотоны света производят эффекты одинаковой величины, достаточной для того, чтобы смазать любые интерференционные эффекты.