Читаем Feynmann 3a полностью

Кстати, когда вокруг ядра бывает много электронов, то они тоже стараются держаться подальше друг от друга. При­чина этого пока вам непонятна, но это факт, что если какой-то электрон занял какое-то место, то другой этого места уже не займет. Точнее, из-за существования двух направлений спи­на, эти электроны могут усесться друг на друга и вертеться: один — в одну сторону, другой — в другую. Но уже никакого третьего на это место вам не поместить. Вы должны их поме­щать на новые места, и в этом-то истинная причина того, что вещество обладает упругостью. Если бы можно было помещать все электроны в одно место, вещество было бы даже плотней, чем обычно. И именно благодаря тому, что электроны не могут сидеть друг на друге, существуют и столы, и другие твердые предметы.

Естественно поэтому, что, желая понять свойства вещества, нужно пользоваться квантовой механикой; классической для этого явно недостаточно.

§ 5. Уровни энергии

Мы говорили уже об атоме в наинизшем возможном энерге­тическом состоянии. Но оказывается, что электрон способен и на многое другое. Он может вращаться и колебаться гораздо энергичней, возможности его движений в атоме довольно мно­гообразны. Согласно квантовой механике, при установивших­ся условиях движения атом может обладать только вполне опре­деленными энергиями. На диаграмме фиг. 38.9 мы будем от­кладывать энергии по вертикали, а горизонтальными линиями отмечать разрешенные значения энергии. Когда электрон сво­боден, т. е. когда его энергия положительна, она может быть любой; скорость электрона тоже может быть какой угодно. Но энергии связанных состояний не произвольны. Атом мо­жет иметь только ту или иную энергию из дозволенной сово­купности значений, скажем, таких, как на фиг. 38.9.

Обозначим эти разрешенные значения через Е0 , E1 , E2 , Е3 . Если первоначально атом находится в одном из этих «возбуж­денных» состояний E1, E2 и т. д., он не останется в нем навсег­да. Раньше или позже он упадет в низшее состояние и излучит при этом энергию в виде света. Частота испущенного света определяется требованием сохранения энергии плюс квантовомеханическим пониманием того, что частота света связана с энергией света условием (38.1).

Фиг. 38.9. Схема энергий атома. Показано несколько возможных переходов.

Поэтому, например, частота света, освобожденного в переходе от энергии Е3 к энергии E1 , равна

(38.14)

Эта частота характерна для данного сорта атомов и определяет линию в спектре испускания. Возможен и другой переход — от E3 к Е0 . У него своя частота:

(38.15)

Еще одна возможность заключается в том, что если атом воз­бужден до состояния E1, то он может упасть в основное состоя­ние е0, излучая фотон с частотой

(38.16)

Мы привели здесь эти три перехода для того, чтобы подчеркнуть интересную связь между ними. Из трех формул (38.14), (38.15), (38.16) легко получить

(38.17)

Вообще, обнаружив две линии в спектре, можно ожидать, что найдется и линия с частотой, равной сумме (или разности) частот. Все линии можно объяснить, отыскав серию уровней, таких, что каждая линия соответствует разности энергий меж­ду какими-то двумя уровнями. Это замечательное совпадение между частотами линий в спектре было замечено еще до откры­тия квантовой механики. Его называют комбинационным прин­ципом Ритца. С точки зрения классической механики он опять выглядит таинственно. Впрочем, не будем больше напоминать о том, что классическая механика обанкротилась в мире ато­мов; мне кажется, мы это уже хорошо показали.

Мы говорили уже о том, что в квантовой механике все собы­тия представляются в виде амплитуд, которые ведут себя как волны, имеют определенную частоту и волновое число. Посмот­рим теперь, как при помощи амплитуд объяснить, что у атома бывают только определенные энергетические состояния. Из всего, что было сказано до сих пор, это вывести и понять невоз­можно. Но зато мы все знаем, что волны в ограниченном объеме обладают определенными частотами. Скажем, если звуковая волна ограничена пределами органной трубы или как-либо иначе, то звуковые колебания могут быть разными, но их ча­стоты не могут быть любыми. И так всегда: у тела, внутри которого держатся волны, всегда бывают определенные резонанс­ные частоты. Волны, заключенные в ограниченный объем, всег­да обладают лишь определенным набором частот. (В дальней­шем мы еще будем изучать это явление и выпишем все нужные формулы.) Ну, а поскольку существует общее соотношение между частотой колебаний амплитуды и энергией, то нет ниче­го удивительного в том, что электроны, связанные в атомах, обладают только вполне определенными энергиями.

§ 6. Немного философии

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука