E2-р2c2=m2c4,
т. е. рmрm=m2. Это величайший результат четырехмерья, о котором мы уже говорили много раз, устанавливающий связь между энергией и импульсом в классической теории. Теперь же, поскольку мы собираемся заменить E и p на w и k помощью подстановки Е=hw и p=hk, он означает, что в квантовой механике должна существовать связь
Таким образом, возникло соотношение между частотой и волновым числом квантовомеханической амплитуды, описывающей частицу с массой m. Из этого уравнения можно получить
т. е. фазовая скорость w/k; снова больше скорости света!
Рассмотрим теперь групповую скорость. Она должна быть равна скорости, с которой движется модуляция, т. е. dw/dk.
Чтобы найти ее, нужно продифференцировать квадратный корень; это дело нехитрое. Производная равна
Но входящий сюда квадратный корень есть попросту w/с, так что эту формулу можно записать в виде dw/dk=е2k/w. Далее, так как k/w равно р/Е, то
Но, согласно (48.20) и (48.21), с2р/Е равно v — скорости частицы в классической механике. Таким образом видно, что, принимая во внимание основные квантовомеханические соотношения E=hw и p=hk, определяющие w и k через классические величины Е и р и дающие только уравнение w2-k2c2= =m2с4/h2, теперь можно понять также соотношения (48.20) и (48.21), связывающие Е и р со скоростью. Групповая скорость, разумеется, должна быть скоростью частиц, если эта интерпретация вообще имеет какой-либо смысл. Пусть в какой-то момент, как мы полагаем, частица находится в одном месте, а затем; скажем через 10 минут,— в другом. Тогда, согласно квантовой механике, расстояние, пройденное «колоколом», разделенное на интервал времени, должно равняться классической скорости частицы.
§ 6. Волны в пространстве трех измерений
Мы заканчиваем наше обсуждение волн несколькими общими замечаниями о волновом уравнении. Эти замечания, призванные дать нам картину того, чем нам предстоит заниматься в будущем, вовсе не претендуют на то, чтобы вы поняли их сразу; они должны скорее показать, как будут выглядеть все эти вещи, когда вы несколько больше познакомитесь с волнами. Мы уже записали уравнение для распространения звука в одном измерении:
здесь с — скорость того, что мы назвали волнами. Если речь идет о звуке, то это скорость звука, если о свете — то это скорость света. Мы показали, что для звуковой волны перемещения частиц должны распространяться с некоторой скоростью. Но избыточное давление, как и избыточная плотность, тоже распространяется с некоторой скоростью. Таким образом, можно ожидать, что и давление будет удовлетворять этому же уравнению.
Так оно и есть на самом деле, однако докажите это самостоятельно. Указание: ru пропорционально скорости изменения c с расстоянием х. Следовательно, продифференцировав волновое уравнение по х, мы немедленно обнаружим, что дc/дх удовлетворяет тому же самому уравнению. Другими словами, ru удовлетворяет тому же самому уравнению. Но Рu пропорционально ru, поэтому и Рu удовлетворяет тому же самому уравнению. Таким образом, и давление, и перемещение — все описывается одним и тем же уравнением.
Обычно волновое уравнение для звука записывается через давление, а не через перемещение. Это проще, потому что давление — скаляр и не имеет никакого направления. Но перемещение есть вектор, и поэтому лучше иметь дело с давлением.
Следующий вопрос, который нам предстоит обсудить, относится к волновому уравнению в трехмерном пространстве. Мы знаем, что звуковая волна в одномерном пространстве описывается решением ехр[i(wt-kx)], где w=kcS. Кроме того, нам известно, что в трех измерениях волна описывается выражением exp[i(wt-kxx-kyy-kzz)], и в этом случае w2=k2сS2 [сокращенная запись (k2x+k2y+k2z)c2S]. Сейчас мы хотим просто угадать вид волнового уравнения в трехмерном пространстве. Естественно, что в случае звука это уравнение можно получить с помощью тех же самых динамических соображений, но уже в трехмерном пространстве. Однако мы не будем сейчас делать этого, а просто напишем ответ: уравнение для давления или перемещения (или чего-то другого) имеет вид
правильность этого уравнения может быть легко проверена подстановкой в него функции exp[i(wt-k·r)]. Ясно, что при каждом дифференцировании по х происходит умножение на -ikx. Если мы дифференцируем дважды, то это эквивалентно умножению на -k2x, так что для такой волны первый член получится равным -k2xPu. Точно таким же образом второй член окажется равным -k2уРu, а третий — равным -k2zPu. С правой же стороны мы получим -w2/c2SРu. Если мы вынесем 1 за скобку Ри и изменим знаки всех членов, то увидим, что между k и w как раз получится желаемое соотношение.