будет общим решением для любой струны. Но нам, помимо этого, нужно еще удовлетворить условию неподвижности одного конца. Если в уравнении (49.1) мы положим х=0 и посмотрим, какие будут у в любой момент t, то получим y=F(-ct)+G(+ct). Но эта сумма должна быть нулем в любой момент времени, а это означает, что функция G(+ct) должна быть равна -F(-ct). Другими словами, функция G от некоторой величины должна быть равна функции -F от той же величины со знаком минус. Подставляя снова полученный результат в уравнение (49.1), находим решение поставленной задачи:
y=F(x-ct)-F(-x-ct). (49.2)
Ясно, что это выражение всегда даст y=0, если х положить равным нулю.
На фиг. 49.1 представлена волна, идущая в отрицательном x-направлении вблизи точки х=0, и гипотетическая волна, идущая в противоположном направлении с обратным знаком и с другой стороны от начала координат.
Фиг. 49.1. Отражение от стенки как суперпозиция двух бегущих волн.
Я сказал «гипотетическая», потому что с другой стороны, конечно, никакой колеблющейся струны нет. Истинное же движение струны должно рассматриваться как сумма этих двух волн в области положительных х. Достигнув начала координат, они в точке х=0 полностью уничтожат друг друга, а затем вторая (отраженная) волна, идущая, разумеется, в противоположном направлении, окажется единственной волной в области положительных х. Эти результаты эквивалентны следующему утверждению: волна, достигнув защемленного конца струны, отражается от него с изменением знака. Такое отражение всегда можно понять, если представить себе, как нечто дошедшее до конца струны вылетит затем из-за стены «вверх ногами». Короче говоря, если мы предположим, что струна бесконечна и что, где бы ни находилась волна, бегущая в одном направлении, всегда существует симметричная ей относительно точки х=0 другая волна, бегущая в противоположном направлении, то в самой точке х=0 никакого перемещения не будет, а поэтому безразлично, защемлена ли струна в этом месте или нет.
Следующий наш пример — отражение периодической волны. Предположим, что волна, описываемая функцией F(x-ct), представляет собой синусоидальную волну, которая затем отражается. Тогда отраженная волна -F(-х-ct) тоже будет синусоидальной волной той же частоты, но пойдет она в противоположном направлении. Эту ситуацию проще всего описать с помощью комплексных функций
F(x-ct)=eiw(t-x/c) и F(-х-ct)=eiwa(t+x/c).
Нетрудно убедиться, что если подставить их в выражение (49.2) и положить х=0, то в любой момент времени t перемещение будет равно нулю и, следовательно, необходимое условие окажется выполненным. Воспользовавшись теперь свойством экспоненты, можно записать результат в более простом виде:
y=eiwt(e-iwx/c-eiwx/c)=-2ieiwtsin(wx/c). (49.3)
Мы получили нечто новое и интересное. Из этого решения ясно, что если мы посмотрим на любую точку х нашей струны, то увидим, что она осциллирует с частотой w. Совершенно неважно, где находится эта точка, все равно частота будет той же самой! Однако на струне есть такие места (где sin (wx/c)=0), которые вообще не перемещаются. Более того, если в любой момент времени t сделать моментальный снимок колеблющейся струны, то на фотографии получится синусоидальная волна, но величина ее амплитуды будет зависеть от времени t. Из выражения (49.3) можно видеть, что длина одного цикла синусоидальной волны равна длине какой-либо из волн;
l=2pc/w. (49.4)
Неподвижные точки удовлетворяют условию sin(wx/c)=0, которое означает, что wx/c=0, p, 2p, ..., np, ... . Эти точки называются узлами. Каждая точка между двумя соседними узлами движется синусоидально вверх и вниз, но способ ее движения остается фиксированным в пространстве. Это основная характеристика того, что называется собственным колебанием, гармоникой или модой. Если движение обладает тем свойством, что каждая точка предмета движется строго синусоидально и все точки движутся с одинаковой частотой (хотя одни, может быть, больше, а другие меньше), то мы имеем дело с собственным колебанием.
§ 2. Волны в ограниченном пространстве и собственные частоты