Читаем Feynmann 4a полностью

Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегося в одном направлении. С тече­нием времени этот горб подойдет к одному концу струны и в конце концов превратится в небольшой всплеск, поскольку здесь он складывается с перевернутым ответным горбом, идущим с другой стороны. Наконец первый горб совсем исчезнет, а в обратном направлении побежит другой, «ответный» горб, и весь процесс повторится уже на другом конце. Как видите, задача решается совсем просто, впрочем здесь возникает интересный вопрос: можно ли в этом случае получить синусоидальную вол­ну (только что описанное решение периодично, но, разумеется, не синусоидально периодично). Давайте попытаемся «вставить» в нашу струну синусоидально периодическую волну. Если один конец струны закреплен, то мы знаем, что должно полу­читься нечто похожее на наше предыдущее решение (49.3). Но то же самое должно получиться и у второго конца, ведь он тоже закреплен. Поэтому единственная возможность полу­чить периодическое синусоидальное движение—это взять волну, которая в точности укладывается на длине струны. В против­ном случае мы не получим собственной частоты, с которой струна могла бы продолжать свои колебания. Короче говоря, если по струне пустить синусоидальную волну, которая в точности укладывается на ее длине, то она сохраняет свою идеальную синусообразную форму и будет гармонически колебаться с не­которой частотой.

Математически мы можем задать форму волны в виде функ­ции sinkx, где k=w/c, как и в уравнениях (49.3) и (49.4). Эта функция обращается в нуль при х=0, однако то же условие должно выполняться и на другом конце струны. Дело в том, что k уже не будет произвольным, как в случае полуограниченной струны. Оба конца могут быть закреплены при одном-единственном условии, что sinkL=0. Но чтобы синус был равен нулю, его угол должен быть кратен целому числу p, например 0, p, 2p и т. д. Поэтому уравнение

kL=np (49.5)

в зависимости от того целого числа, которое мы подставим в него, дает полный набор различных чисел k. При этом каждому числу k соответствует частота w, которая по формуле (49.3) равна просто

w=kc=npc/L. (49.6)

Итак, мы нашли, что синусоидальные колебания струны могут происходить только с некоторыми определенными часто­тами. Это — наиболее важная характеристика волн в ограни­ченной области. Сколь бы сложна ни была система, всегда ока­зывается, что в ней могут быть чисто синусоидальные колеба­ния, но частота их определяется свойствами данной системы и природой ее границ. В случае струны возможно множество раз­личных частот, каждой из которых соответствует определенное собственное колебание — движение, синусоидально повторяющее самое себя.

На фиг. 49.2 показаны первые три собственные гармоники нашей струны.

Фиг. 49.2. Первые три гар­моники колеблющейся струны.

Длина волны l первой из них равна 2L. В этом легко убедиться, продолжив волну до точки x=2L и получив полный цикл синусоидальной волны. Угловая частота w равна в общем случае 2pc, деленному на длину волны К, а поскольку сейчас у нас l=2L, то частота будет равна pс/b, что согласуется с формулой (49.6) при n=1. Обозначим эту частоту через w1 Следующая собственная гармоника напоми­нает бантик из двух петель с узлом посредине. Ее длина просто равна L. Соответствующая величина k, а следовательно, и ча­стота w должны быть вдвое большими, т. е частота равна 2w1. Частота третьей собственной гармоники оказывается рав­ной Зw1 и т. д. Таким образом, различные собственные гармо­ники кратны целому числу низшей частоты w1 т. е. w1, 2w1 , Зw1 и т. д.

Вернемся теперь к общему движению струны. Оказывается, что любое возможное движение можно рассматривать как одно­временное действие некоторого числа собственных колебаний. На самом деле для описания наиболее общего движения долж­но быть одновременно возбуждено бесконечное число собствен­ных гармоник. Чтобы получить некоторое представление о том, что происходит при таком сложении, давайте посмотрим, что получится при одновременном колебании двух первых соб­ственных гармоник. Пусть первая из них колеблется так, как это показано в ряде схематических чертежей фиг. 49.3, где изображены отклонения струны через равные промежутки вре­мени на протяжении полуцикла низшей частоты.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука