Читаем Feynmann 4a полностью

Предположим теперь, что одновременно с первой собствен­ной гармоникой работает и вторая. Последовательные положе­ния струны при возбуждении этой собственной гармоники показаны тоже на фиг. 49.3 пунктирной линией. По отношению к первой гармонике они сдвинуты по фазе на 90°. Это означает, что в начальный момент никакого отклонения не было, но ско­рости двух половинок струны направлены в противоположные стороны. Вспомним теперь общий принцип линейных систем: если взять любые два решения, то сумма их тоже будет реше­нием. Поэтому перемещения, полученные сложением двух ре­шений, показанных на фиг. 49.3, будут третьим возможным ре­шением

Фиг. 49.3. Две гармоники, напоминающие при сложе­нии бегущую волну.

На этом же рисунке показан и результат сложения, который начинает напоминать горб, пробегающий взад и вперед по струне от одного конца до другого, хотя с помощью только двух собственных гармоник нельзя построить доста­точно хорошей картины такого движения; их нужно гораздо больше. Этот результат представляет на самом деле частный случай основного принципа линейных систем, который гла­сит:

Любое движение можно рассматривать как составленное из различных собственных гармоник, взятых с надлежащими ам­плитудами и фазами.

Значение этого принципа обусловлено тем фактом, что каж­дое собственное колебание — очень простая вещь — это просто синусоидальное движение во времени. По правде говоря, даже общее движение струны — еще не самая сложная вещь; суще­ствует движение куда более сложное, скажем такое, как виб­рация крыльев самолета. Тем не менее даже у крыльев само­лета можно обнаружить некие собственные кручения с опре­деленными частотами. А если так, то полное движение можно рассматривать как суперпозицию гармонических колебаний (за исключением тех случаев, когда вибрация настолько велика, что система уже не может рассматриваться как линейная).

§ 3. Двумерные собственные колебания

Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волнах в трубе. В конце концов мы должны добраться до трех измерений, но сначала давайте остановимся на более легком этапе — этапе двумерных колеба­ний. Возьмем для большей определенности прямоугольный ре­зиновый барабан, перепонка которого закреплена по краям так, что на прямоугольном крае барабана она перемещаться не может. Пусть размеры прямоугольника будут

равны а и 6, как это показано на фиг. 49.4.

Фиг. 49.4. Колебание прямо­угольной пластинки.

Прежде всего, каковы ха­рактеристики возможного движения? Можно начать с того же, с чего мы начали, когда рассматривали пример со стру­ной. Если бы никакого закрепления не было вовсе, то можно было бы ожидать появления волн, бегущих в некото­ром направлении, например синусоидальной волны, опи­сываемой функцией ехр(iwt) ехр[-i(kчx)+i(kyy)], направле­ние движения которой зависит от относительной величины чисел kx и ky. А как теперь сделать узел на оси х, т. е. при y=0? Используя ту же идею, что и для одномерной струны, можно добавить волну, описываемую комплексной функцией

-exp(iwt)ехр[-i(kxx)-i(kyy)].

Суперпозиция этих волн в результате дает нулевое переме­щение при y=0 независимо от того, каковы будут значения х и t. (Хотя эти функции будут определены и для отрицательных значений у там, где никакого барабана нет и колебаться не­чему, но на это можно не обращать никакого внимания. Ведь нам хотелось устранить перемещение при у=0, и мы добились этого.) Вторую функцию в этом случае можно рассматривать как отраженную волну.

Однако нам нужно получить узел не только на линии y=0, но и на линии у=b. Как же это сделать? Решение такой задачи связано с некоторыми вещами, которыми мы занимались при изучении отражения света от кристалла. Волны, гасящие друг друга при y=0, могут сделать то же самое и при у=b, только когда 2b sin 0 равно целому числу длин волн l, (q — угол, пока­занный на фиг. 49.4):

ml=2bsinq, m=0, 1, 2, .... (49.7)

Точно таким же образом, т.е. сложением еще двух функций [-exp(iwt)]exp[i(kxx)+ i(kyy)] и [+exp(ict)}exp[i(kxx)-i(kyy)], каждая из которых представляет отражение другой от линии х=0, можно устроить узел и на оси у. Условие того, что линия х=а будет тоже узловой, получается так же, как и условие при у=b, т. е. 2acosq должно быть равно целому числу длин волн:

nl = 2acosq. (49.8)

Тогда окончательный результат таков: волны, «заключенные» в ящике, имеют вид стоячей волны, т. е. образуют какие-то определенные собственные гармоники.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки