Читаем Feynmann 5 полностью

Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явле­ние может оказаться слишком запутанным и не поддающимся анализу путем решения дифферен­циальных уравнений. Но можно все же полу­чить хорошее представление о поведении си­стемы, выработав в себе особую способность чувствовать характер решения в различных обстоятельствах. Этой цели хорошо служат представления о линиях поля, о емкостном, индуктивном и активном сопротивлениях. Мы потратим достаточно много времени на их изу­чение. Это поможет нам приобрести способ­ность ощущать, что происходит в тех или иных электромагнитных явлениях. С другой сторо­ны, ни одна из вспомогательных, эвристиче­ских моделей (например, картина силовых линий) на самом деле не может вместить в себя адекватно и точно все события. Имеется лишь один точный способ представления законов — способ дифференциальных уравнений. Урав­нения обладают тем преимуществом, что, во-первых, они фундаментальны, а

во-вторых (насколько нам известно), точны. Если вы их выучили, вы всегда можете к ним вернуться. В них нет ничего, что следовало бы потом за­быть.

Чтобы начать понимать, что должно про­изойти в тех или иных условиях, вам понадо­бится какое-то время. Вам придется порешать уравнения, и всякий раз, когда вы решите их, вы тем самым узнаете что-то новое о характере решений. Чтобы запомнить эти решения, полезно также сформулировать их смысл на языке линий поля и иных подобных понятий. Таков путь, на котором приходит истинное «понимание» уравнений. В этом и заключается раз­ница между физикой и математикой. Математики или люди с математическим складом ума часто при «изучении» физики теряют физику из виду и впадают в заблуждение. Они говорят: «Послушайте, эти дифференциальные уравнения — уравнения Максвелла — ведь это все, что есть в электродинамике; ведь сами физики признают, что нет ничего, что бы не содержалось в этих уравнениях. Уравнения эти сложны; ладно, но это всего лишь математические уравнения, и если я разберусь в них ма­тематически, я разберусь и в физике». Но ничего из этого не выходит. Математики, которые подходят к физике с этой точки зрения (а таких очень много), обычно не делают большого вкла­да в физику, да, кстати, и в математику. Их постигает неудача оттого, что настоящие физические ситуации реального мира так запутаны, что нужно обладать гораздо более широким понима­нием уравнений.

Дирак объяснил, что значит действительно понять уравне­ние — понять, не ограничиваясь его строгим математическим смыслом. Он сказал: «Я считаю, что понял смысл уравнения, если в состоянии представить себе общий вид его решения, не решая его непосредственно». Значит, если у нас есть способ узнать, что случится в данных условиях, не решая уравнения непосредственно, мы «понимаем» уравнения в применении к этим условиям. Физическое понимание — это нечто неточное, неопределенное и абсолютно нематематическое, но для физика оно совершенно необходимо.

Обычно курс физики подобного рода строится так, что физи­ческие представления развиваются постепенно: начиная с са­мых простейших явлений, переходят ко все более и более слож­ным. Кое-что из изученного при этом неминуемо забывается (то, что верно лишь в определенных условиях, а не всегда). К примеру, «закон» обратных квадратов для электрической силы верен не всегда. Нам больше по душе обратный подход. Луч­ше начать с полных, самых общих законов, а затем повер­нуть вспять и применять их к простым задачам, развивая фи­зические представления по мере продвижения вперед. Так мы и собираемся сделать.

Наш подход совершенно противоположен подходу истори­ческому, когда изложение слепо следует за экспериментами, в которых впервые была получена нужная информация. Но ведь физику развивают множество очень умных людей уже свыше 200 лет, а у нас времени мало и нам нужно овладеть зна­ниями побыстрее. Поэтому мы не можем охватить все, что они сделали. Так что в этих лекциях мы будем вынуждены прене­бречь историей предмета и не будем рассказывать об опытах. Мы надеемся, что вы восполните пропущенное на лабораторных занятиях; и, конечно, очень полезно почитать статьи и книги по истории физики.

§ 2. Скалярные и векторные поля — Т и h

Мы начинаем сейчас рассмотрение абстрактного, математи­ческого подхода к теории электричества и магнетизма. Наша цель — объяснить смысл законов, написанных в гл. 1. Но для этого надо сперва объяснить новые особенные обозначения, которые мы хотим использовать. Давайте поэтому на время позабудем электромагнетизм и разберемся в математике век­торных полей. Она очень важна не только в электромагнетизме, но и во многих физических обстоятельствах, подобно тому как обычное дифференциальное и интегральное исчисление важно во всех областях физики. Мы переходим к дифференциальному исчислению векторов.

Ниже перечислены некоторые сведения из алгебры векторов. Считается, что вы с ними уже знакомы

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное