Читаем Feynmann 5 полностью

Мы будем также пользоваться следующими двумя равенствами:

Фиг. 2.1. Температура Т — пример скалярного поля. С каждой точкой (х, у, z) в прост­ранстве связывается число Т(х, у, z). Все точки на поверхности с помет­кой Т=20° (изображенной в виде кривой при z=0) имеют одну и ту же температуру. Стрелки — это примеры вектора потока тепла h.

Уравнение (2.7) справедливо, конечно, только при Dx; Dy и Dz®0.

Простейшее из физических полей — скалярное. Полем, как вы помните, называется величина, зависящая от положения в пространстве. Скалярное поле — это просто такое поле, кото­рое в каждой точке характеризуется одним-единственным чис­лом — скаляром. Это число, конечно, может меняться во вре­мени, но пока мы на это не будем обращать внимания. (Речь будет идти о том, как поле выглядит в данное мгновение.) В ка­честве примера скалярного поля рассмотрим брусок из какого-то материала. В одних местах брусок нагрет, в других — осту­жен, так что его температура меняется ют точки к точке каким-то сложным образом. Температура тогда будет функцией х, у и z — положения в пространстве, измеренного в прямоугольной си­стеме координат. Температура — это скалярное поле.

Один способ представить себе скалярное поле — это вообра­зить «контуры»,

т. е. мысленные поверхности, проведенные через точки с одинаковыми значениями поля, подобно гори­зонталям на картах, соединяющим точки на одной высоте над уровнем моря. Для температурного поля контуры носят назва­ние «изотермические поверхности», или изотермы. На фиг. 2.1 показано температурное поле и зависимость Т от х и у при z=0. Проведено несколько изотерм.

Поля бывают также векторными. Идея их очень проста. В каждой точке пространства задается вектор. Он меняется от точки к точке. Рассмотрим в виде примера вращающееся тело. Скорость материала тела во всякой точке — это вектор, кото­рый является функцией ее положения (фиг. 2.2). Другой при­мер — поток тепла в бруске из некоторого материала. Если в одной части бруска температура выше, а в другой — ниже, то от горячей части к холодной будет идти поток тепла. Тепло в разных частях бруска будет растекаться в различных направ­лениях. Поток тепла — это величина, имеющая направление;

Фиг. 2.2. Скорости атомов вовращающемся теле — пример век­торного поля.

обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.

Определим теперь h более точно. Длина вектора потока тепла в данной точке — это количество тепловой энергии, про­ходящее за единицу времени и в пересчете на единицу площади сквозь бесконечно малый элемент поверхности, перпендикуляр­ный к направлению потока. Вектор указывает направление потока (фиг. 2.3). В буквенных обозначениях: если DJ — теп­ловая энергия, протекающая за единицу времени сквозь эле­мент поверхности Dа, то

(2.9)

где еf единичный вектор направления потока Вектор h можно определить и иначе — через его компонен­ты. Зададим себе вопрос, сколько тепла протекает через малую поверхность под произвольным углом к направлению потока. На фиг. 2.4 мы изобразили малую поверхность Аa2 под некото­рым углом к поверхности Dat, которая перпендикулярна к по­току. Единичный вектор n перпендикулярен к поверхности

Фиг. 2.3. Тепловой поток векторное поле. Вектор h указывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент по­верхности, ориентированный попе­рек потока, деленную на площадь элемента поверхности.

Фиг. 2.4. Тепловые потоки сквозь 2 и сквозь Aa1 одинаковы.

2. Угол q между n и h равен углу между поверхностями (так как h — нормаль к Da1). Чему теперь равен поток тепла че­рез Dа2 на единицу площади? Потоки сквозь Dа2 и Dа1 равны между собой, отличаются только площади. Действительно, Dа1 = Dа2cosq. Поток тепла через Dа2 равен

(2.10)

Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через произвольный элемент поверхности с единичной нормалью n равен h·n. Можно еще сказать так: компонента потока тепла, перпендикулярная к элементу по­верхности Dа2, равна h·n. Можно, если мы хотим, считать эти утверждения определением h. Сходные идеи мы применим и к другим векторным полям.

§ 3. Производные полей — градиент

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное