Используя эти комбинации, можно пространственные вариации полей записывать в удобном виде, т. е. в виде, не зависящем от той или иной совокупности осей координат.
В качестве примера применения нашего векторного дифференциального оператора С выпишем совокупность векторных уравнений, в которой содержатся те самые законы электромагнетизма, которые мы словесно высказали в гл. 1. Их называют уравнениями Максвелла.
Уравнения Максвелла
(2.41)
где r (ро) — «плотность электрического заряда» (количество заряда в единице объема), a j — «плотность электрического тока» (скорость протекания заряда сквозь единицу площади). Эти четыре уравнения содержат в себе законченную классическую теорию электромагнитного поля. Видите, какой элегантной и простой записи мы добились с помощью наших новых обозначений!
§ 6. Дифференциальное уравнение потока тепла
Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется совершенно четко. Известно, что если взять плиту из какого-то материала и нагреть одну ее сторону до температуры
Обозначая через
Что произойдет в более сложных случаях, скажем, в блоке материала необычной формы, в котором температура как-то прихотливо меняется? Рассмотрим тонкий слой материала и представим себе плиту наподобие изображенной на фиг. 2.7, а, но в миниатюре. Ориентируем ее торцы параллельно изотермическим поверхностям (фиг. 2.7, б), так что для этой малой плиты выполняется уравнение (2.42).
Если площадь этой плиты DА, то поток тепла за единицу времени равен
(2.42)
Коэффициент пропорциональности c (каппа) называется
(2.43)
где Ds — толщина плиты. Но D
(Знак минус написан потому, что тепло течет в сторону понижения температуры.) Уравнение (2.44) — это дифференциальное уравнение теплопроводности в массиве вещества. Вы видите, что это чисто векторное уравнение. С обеих сторон стоят векторы (если
Мы с вами должны будем научиться выписывать все соотношения элементарной физики [наподобие (2.42)] в этих хитроумных векторных обозначениях. Они полезны не только потому, что уравнения начинают от этого
§ 7. Вторые производные векторных полей
Пока мы имели дело только с первыми производными. А почему не со вторыми? Из вторых производных можно составить несколько комбинаций:
(2.45)
Вы можете убедиться, что никаких иных комбинаций быть не может.
Посмотрим сперва на вторую комбинацию (б). Она имеет ту же форму, что и
АX(АT) = (АXА)T = 0, потому что АXА всегда нуль. Значит,
(2.46)
Можно понять, как это получается, если расписать одну из компонент:
что равно нулю [по уравнению (2.8)]. Это же верно и для других компонент. Стало быть, СХ(СT)=0 для любого распределения температур, да и для
Возьмем второй пример. Посмотрим, нельзя ли получить нуль другим путем. Скалярное произведение вектора на векторное произведение, содержащее этот вектор, равно нулю
А·(АХВ) = 0, (2.48)
потому что АХВ перпендикулярно к А и не имеет тем самым составляющих вдоль А. Сходная комбинация стоит в списке (2.45) под номером (г):
С(СXh) = div(roth) = 0. (2.49)
В справедливости этого равенства опять-таки легко убедиться, проделав выкладки на компонентах.
Теперь сформулируем без доказательства две теоремы. Они очень интересны и весьма полезны для физиков.