Мы начнем с той интегральной формулы, куда входит градиент. Мысль, которая содержится в ней, очень проста: раз градиент есть быстрота изменения величины поля, то интеграл от этой быстроты даст нам общее изменение поля. Пусть у нас есть скалярное поле ш
Т Е О Р Е М А 1
(3.1)
Интеграл, стоящий здесь, это
Напомним, что мы понимаем под криволинейным интегралом. Рассмотрим скалярную функцию f(x, y, z) и кривую Г, соединяющую две точки (1) и (2). Отметим на кривой множество точек и соединим их хордами, как на фиг. 3.2. Длина i-й хорды равна Dsi,-, где
подразумевается предел суммы
где fi — значение функции где-то на i-й хорде. Предел — это то,
к чему стремится сумма, когда растет число хорд (разумным образом, чтобы даже наибольшее Dsi®0).
В нашей теореме (3.1) интеграл означает то же самое, хоть и выглядит чуть по-иному. Вместо f стоит другой скаляр — составляющая Сш в направлении Ds. Если обозначить эту составляющую через (Сш)t , то ясно, что
(3.2)
Интеграл в (3.1) и подразумевает сумму таких членов.
А теперь посмотрим, почему уравнение (3.1) правильно. В гл. 1 мы показали, что составляющая Сш вдоль малого смещения DR равна быстроте изменения ш в направлении DR. Рассмотрим хорду кривой Ds от точки (1) до точки
(3.3)
Точно так же мы имеем
(3.4)
где, конечно, (Сш)1 означает градиент, вычисленный на хорде Ds1, a (Сш)2 — градиент, вычисленный на Ds2. Сложив (3.3) и (3.4), получим
(3.5)
Вы видите, что, продолжая прибавлять такие члены, мы получаем в итоге
(3.6)
Левая часть не зависит от того, как выбирать интервалы — лишь бы точки (1) и (2) были теми же самыми, так что справа можно перейти к пределу. Так доказывается уравнение (3.1). Из нашего доказательства видно, что, подобно тому как равенство не зависит и от выбора точек а,
Два слова об обозначениях. Не будет путаницы, если писать для удобства
(3.7)
Тогда наша теорема примет такой вид:
Т Е О Р Е М А 1
(3.8)
§ 2. Поток векторного поля
Прежде чем рассматривать следующую интегральную теорему — теорему о дивергенции,— хотелось бы разобраться в одной идее, смысл которой в случае теплового потока легко усваивается. Мы уже определили вектор h, представляющий количество тепла, протекающего сквозь единицу площади в единицу времени. Положим, что внутри тела имеется замкнутая поверхность
Обозначим через
Позже мы будем иметь дело с интегралами по объему, и тогда будет удобно рассматривать элемент объема в виде малого кубика и обозначать его
Кое-кто пишет и
Поток тепла через элемент поверхности
hn=h·n, (3.9)
и тогда поток тепла сквозь
А весь поток тепла через произвольную поверхность получается суммированием вкладов от всех элементов поверхности. Иными словами, (3.10) интегрируется по всей поверхности
(3.11)