Читаем Feynmann 5 полностью

Этот интеграл мы будем называть «поток h через поверх­ность». Мы рассматриваем h как «плотность потока» тепла, а поверхностный интеграл от h — это общий поток тепла наружу через поверхность, т. е. тепловая энергия за единицу времени (джоули в секунду).

Мы хотим эту идею обобщить на случай, когда вектор не представляет собой потока какой-то величины, а, скажем, является электрическим полем. Конечно, если это будет нужно, то и в этом случае все равно можно проинтегрировать нормаль­ную составляющую электрического поля по площади. Хотя теперь она уже не будет ничьим потоком, мы все еще будем упот­реблять слово

«поток». Мы будем говорить, что

(3.12)

Слову «поток» мы придаем смысл «поверхностного интеграла от нормальной составляющей» некоторого вектора. То же опре­деление будет применяться и тогда, когда поверхность незамк­нута.

А возвращаясь к частному случаю потока тепла, обратим внимание на те случаи, когда количество тепла сохраняется. Представьте себе, к примеру, материал, в котором после перво­начального подогрева не происходит ни дальнейшего подвода, ни поглощения тепла. Тогда, если из какой-то замкнутой по­верхности наружу поступает тепло, содержание тепла во внут­реннем объеме должно падать. Так что в условиях, когда количество тепла сохраняется, мы говорим, что

(3.13)

где Q запас тепла внутри S. Поток тепла из S наружу равен со знаком минус быстроте изменения со временем общего за­паса тепла Q внутри S. Это толкование возможно оттого, что речь идет о потоке тепла, и оттого, что мы предположили, что количество тепла сохраняется. Конечно, если бы внутри объема создавалось тепло, нельзя было бы говорить о полном запасе тепла в нем.

Укажем теперь на интересное свойство потока любого век­тора. Можете при этом представлять себе вектор потока тепла, но верно это будет и для произвольного векторного поля С. Представьте себе замкнутую поверхность S, окружающую объем V. Разобьем теперь объем на две части каким-то «сече­нием» (фиг. 3.4). Получились два объема и две замкнутые по­верхности. Объем V1 окружен поверхностью S1 , составленной частью из прежней поверхности Sa и частью из «сечения» Sab. Объем V2 окружен поверхностью S2, составленной из остатка прежней поверхности (Sb) и замкнутой сечением Sab. Зададим вопрос: если мы рассчитаем поток через поверхность Sl и при­бавим к нему поток сквозь поверхность S2, будет ли их сумма равна потоку через первоначальную поверхность? Ответ гласит: «Да». Потоки через часть Sab , общую обеим поверхностям S1 и S2, в точности сократятся. Для потока вектора С из V1 можно написать

(3.14)

а для потока из V2:

(3.15)

Заметьте, что во втором интеграле мы обозначили внешнюю нормаль к Sab буквой n1, если она относится к S1 , и буквой n2, если она относится к S1 (см. фиг. 3.4).

Фиг. 3.4. Объем V, заключенный внутри поверхности S, делится на две части «сече­нием» (поверхностью Sab). Получается объем V1, окруженный поверхностью S1 = Sa+Sab, и объем V2, окруженный поверхностью S2= Sb+Sab.

Ясно, что n1=-n2, и тем

самым

(3.16)

Складывая теперь уравнения (3.14) и (3.15), мы убеждаемся, что сумма потоков сквозь S1 и S2 как раз равна сумме двух ин­тегралов, которые, взятые вместе, дают поток через перво­начальную поверхность S=Sa+Sb.

Мы видим, что поток через всю внешнюю поверхность S можно рассматривать как сумму потоков из тех двух частей, на которые разрезан объем. Эти части можно еще разрезать: скажем, V1 разбить пополам. Опять придется прибегнуть к тем же доводам. Так что для любого способа разбиения первоначаль­ного объема всегда остается справедливым то свойство, что по­ток через внешнюю поверхность (первоначальный интеграл) равен сумме потоков изо всех внутренних частей.

§ 3. Поток из куба; теорема Гаусса

Рассмотрим теперь частный случай потока из маленького ку­бика и получим интересную формулу. Ребра куба пусть нап­равлены вдоль осей координат (фиг. 3.5), координаты вершины, ближайшей к началу, суть х, у, z, ребро куба в направлении х равно Dx, ребро куба (а точнее, бруска) в направлении у равно Dy, а в направлении z равно Dz. Мы хотим найти поток вектор­ного поля С через поверхность куба. Для этого вычислим сумму потоков через все шесть граней. Начнем с грани 1 (см. фиг. 3.5).

Поток наружу сквозь нее равен x-компоненте С с минусом, проинтегрированной по площади грани. Он равен

Так как куб считается малым, этот интеграл можно заменить значением Сх в центре грани 1эту точку мы обозначили (1), умноженным на площадь грани DyDz:

Поток сквозь 1 наружу=-Cx(1)DyDz.

Подобным же образом поток наружу через грань 2 равен

Поток сквозь 2 наружу= Cx(2) DyDz.

Фиг. 3.5. Вычисление потока вектора С из маленького кубика.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука