Заметьте, что интеграл берется по всему замкнутому пути, а не от одной точки до другой, как это делалось раньше. Кружочек на знаке интеграла должен нам напоминать об этом. Такой интеграл называется циркуляцией векторного поля по кривой Г. Название связано с тем, что первоначально так рассчитывали циркуляцию жидкости. Но название это, как и поток, было распространено на любые поля, даже такие, в которых «циркулировать» нечему.
Забавляясь той же игрой, как с потоком, мы можем показать, что циркуляция вдоль контура есть сумма циркуляции вдоль двух меньших контуров. Положим, что, соединив две точки (1) и (2) первоначальной кривой с помощью некоторой линии, мы разбили кривую на два контура Г1 и Г2 (фиг. 3.8). Контур Г1 состоит из Гa — части первоначальной кривой слева от (1) и (2) и «соединения» Г
Циркуляция вдоль Г1 есть сумма интеграла вдоль Га и вдоль ГаЬ. Точно так же и циркуляция вдоль Г2 есть сумма двух частей, одной вдоль Гb, другой — вдоль Гab. Интеграл вдоль Гab для кривой Г2 имеет знак, противоположный тому знаку, который он имел для кривой
Повторяя прежние аргументы, мы можем убедиться, что сумма двух циркуляции даст как раз криволинейный интеграл вдоль первоначальной кривой Г. Интегралы по Гab сократятся. Циркуляция по одной части плюс циркуляция вдоль другой равняется циркуляции вдоль внешней линии. Этот процесс разрезания большого контура на меньшие можно продолжить. При сложении циркуляции по меньшим контурам смежные части будут сокращаться, так что сумма их сведется к циркуляции вдоль единственного первоначального контура.
Теперь предположим, что первоначальный контур — это граница некоторой поверхности. Существует бесконечное множество поверхностей, границей которых служит все тот же первоначальный замкнутый контур. Наши результаты не зависят, однако, от выбора этих поверхностей. Сперва мы разобьем наш первоначальный контур на множество малых контуров, лежащих на выбранной поверхности (фиг. 3.9).
Какой бы ни была форма поверхности, но если малые контуры сделать достаточно малыми, всегда можно будет считать каждый из них замыкающим достаточно плоскую поверхность. Кроме того, каждый из них можно сделать очень похожим на квадрат. И циркуляцию вокруг большого контура Г можно найти, подсчитав циркуляции по всем квадратикам и сложив их.
§ 6. Циркуляция по квадрату; теорема Стокса
Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он расположен в одной из координатных плоскостей), то расчет сделать легко. Так как пока мы не делали никаких предположений об ориентации осей координат, мы вправе выбрать их так, чтобы тот квадратик, на котором мы сосредоточили свое внимание, оказался в плоскости
Мы хотим теперь найти циркуляцию поля С по нашему квадратику. Криволинейное интегрирование легко проделать, если квадратик сделать таким маленьким, чтобы вектор С на протяжении одной стороны квадрата менялся очень мало. (Это предположение выполняется тем лучше, чем меньше квадратик, так что на самом деле речь идет о бесконечно малых квадратиках.) Отправившись от точки
(3.31) Посмотрим теперь на первый и третий члены. В сумме они дают
(3.32)
Вам может показаться, что в принятом приближении эта разность равна нулю. Но это только в первом приближении. Мы можем быть более точными и учесть скорость изменения
(3.33)