Читаем Feynmann 5 полностью

В следующем приближении пойдут члены с (Dy)2, но ввиду того, что нас интересует в конечном счете только предел при Dy®0, то этими членами можно пренебречь. Подставляя (3.33) в (3.32), мы получаем

(3.34)

Производную при нашей точности можно брать в точке (х, у). Подобным же образом оставшиеся два члена можно написать в виде

(3.35)

и циркуляция по квадрату тогда равна

(3.36)

Интересно, что в скобках получилась как раз z-компонента ротора С. Множитель DxDy— это площадь нашего квадрата. Так что циркуляцию (3.36) можно записать как

(СXС)zDа.

Но z-компонента это на самом деле компонента, нормальная к элементу поверхности.

Фиг. 3.11. Циркуляция век­тора С по Г равна поверхност­ному интегралу от нормальной компоненты вектора СXС.

Поэтому циркуляцию вокруг квад­ратика можно задать и в инвариантной векторной записи:

(3.37)

В результате имеем: циркуляция произвольного вектора С по бесконечно малому квадрату равна произведению состав­ляющей ротора С, нормальной к поверхности, на площадь квад­рата.

Циркуляция по произвольному контуру Г легко теперь может быть увязана с ротором векторного поля. Натянем на кон­тур любую подходящую поверхность S (как на фиг. 3.11) и сложим между собой циркуляции по всем бесконечно малым квадратикам на этой поверхности. Сумма может быть записана в виде интеграла. В итоге получится очень полезная теорема, называемая теоремой Стокса [по имени физика Стокса].

ТЕОРЕМА СТОКСА

(3.38)

где S произвольная поверхность, ограниченная контуром Г. Теперь мы должны ввести соглашение о знаках. На приведен­ной ранее фиг. 3.10 ось z показывает на вас, если система коорди­нат «обычная», т. е. «правая». Когда в криволинейном интеграле мы брали «положительное» направление обхода, то циркуляция получилась равной z-компоненте вектора СXC. Обойди мы кон­тур в другую сторону, мы бы получили противоположный знак. Как вообще узнавать, какое направление надо выбирать для положительного направления «нормальной» компоненты век­тора СXC? «Положительную» нормаль надо всегда связывать с направлением так, как это сделано было на фиг. 3.10. Об­щий случай показан на фиг. 3.11.

Для запоминания годится «правило правой руки». Если вы расположите пальцы вашей правой руки вдоль контура Г, чтобы кончики пальцев показывали положительное направление обхода ds, то ваш большой палец укажет направление положи­тельной нормали к поверхности S.

§ 7. Поля без роторов и поля без дивергенций

Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по любому контуру — нуль. Если мы теперь возь­мем две точки (1) и (2) на замкнутой кривой (фиг. 3.12), то кри­волинейный интеграл от касательной составляющей от (1) до (2) не должен зависеть от того, какой из двух возможных путей мы выбрали. Можно заключить, что интеграл от (1) до (2) может зависеть только от расположения этих точек, т. е. что он есть функция только от координат точек. Той же логикой мы пользо­вались в вып. 1, гл. 14, когда доказывали, что если интеграл от некоторой величины по произвольному замкнутому контуру всегда равен нулю, то этот интеграл может быть представлен в виде разности функций от координат двух концов. Это позво­лило нам изобрести понятие потенциала. Мы доказали далее, что векторное поле является градиентом этой потенциальной функ­ции [см. вып. 1, уравнение (14.13)].

Отсюда следует, что любое векторное поле, у которого ротор равен нулю, может быть представлено в виде градиента неко­торой скалярной функции, т. е. если АXС=0 всюду, то существует некоторая функция y (пси), для которой С = Сy (полезное представление). Значит, мы можем, если захотим, опи­сывать этот род векторных полей при помощи скалярных полей.

Теперь докажем еще одну формулу. Пусть у нас есть про­извольное скалярное поле j (фи). Если взять его градиент Сj, то интеграл от этого вектора по любому замкнутому контуру должен быть равен нулю.

Фиг. 3.12. Если СXС равно нулю, то циркуляция по замкнутой при­вой Г тоже нуль.

Криволинейный интеграл от C·ds на участке от (1) до (2) вдоль а должен быть равен интегралу вдоль b.

Фиг. 3.13. При переходе к пределу замкнутой поверхности поверхно­стный интеграл от (СXС)n должен обратиться в нуль.

Криволинейный интеграл от точки (1) до точки (2) равен [j(2)- j (1)]. Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:

Применяя теорему Стокса, можно заключить, что

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное