Как же решить эту задачу? Она похожа на задачу по электростатике, в которой имеются два материала с разной диэлектрической проницаемостью x
Это один из тех случаев, к которым следует относиться с осторожностью. По физическим причинам могут быть определенные ограничения тех математических условий, которые возникают в каком-либо случае. Поэтому если мы проанализировали дифференциальное уравнение только для некоторых ограниченных примеров, то вполне можем упустить ряд решений, возникающих в других физических условиях. Например, нет материала, обладающего диэлектрической проницаемостью, равной нулю, а теплопроводность вакуума равна нулю. Поэтому нет электростатического аналога идеального теплоизолятора. Мы можем, однако, попытаться использовать те же
Как же найти электрическое поле, у которого нет составляющей, перпендикулярной к поверхности? Иначе говоря, такое поле, которое всюду
к поверхности, потому что проводник всюду находился при одном и том же значении потенциала.
В задаче об электрическом поле мы придумали решение, вообразив за проводящей плоскостью точечный заряд. Можно воспользоваться снова этой же идеей. Попытаемся выбрать такое «изображение» источника, которое автоматически обращало бы в нуль нормальную компоненту поля вблизи поверхности. Решение показано на фиг. 12.2. Электрическое изображение источника с
Итак, наша задача о потоке тепла решена. Температура во всем пространстве одинакова по непосредственной аналогии с потенциалом от двух одинаковых точечных зарядов. Температура
(12.13)
(Это, конечно, полностью аналогично j= q/4pe0r.) Температура точечного источника и, кроме того, его изображения равна
(12.14)
Эта формула дает нам температуру всюду внутри блока. Несколько изотермических поверхностей приведено на фиг. 12.2.
Показаны также линии h, которые можно получить из выражения h =-КСТ
В самом начале мы интересовались распределением температуры на поверхности. Для точки на поверхности находящейся на расстоянии р от оси, r1=r2=Ц (р2 + а2),
следовательно,
(12.15)
Эта функция также изображена на фиг. 12.2. Естественно, что температура прямо над источником выше, чем вдали от него. Такого рода задачи часто приходится решать геофизикам. Теперь мы видим, что это те же самые задачи, которые мы решали в электричестве.
§ 3. Натянутая мембрана
Рассмотрим теперь совсем другую область физики, в которой тем не менее мы придем снова к точно таким же уравнениям. Возьмем тонкую резиновую пленку — мембрану, натянутую на большую горизонтальную раму (наподобие кожи на барабане). Нажмем на мембрану в одном месте вверх, а в другом — вниз (фиг. 12.3). Сможем ли мы описать форму поверхности? Покажем, как можно решить эту задачу, когда отклонения мембраны не очень велики.