Читаем Feynmann 5b полностью

Нужно иметь, конечно, еще одно уравнение, которое описы­вает, как поток течет в разных местах. Во многих веществах поток тепла примерно пропорционален скорости изменения температуры с положением: чем больше разность температур, тем больше поток тепла. Мы знаем, что вектор потока тепла пропорционален градиенту температуры. Константа пропор­циональности К, зависящая от свойств материала, называется коэффициентом теплопроводности

(12.7)

Если свойства материала меняются от точки к точке, то К=К (х, у, z) и есть функция положения. [Уравнение (12.7) не столь фундаментально, как (12.5), выражающее сохранение тепловой энергии, потому что оно зависит от характерных свойств вещества.] Подставляя теперь уравнение (12.7) в (12.6), получаем

(12.8)

что в точности совпадает по форме с (12.4). Задачи с постоянным потоком тепла и задачи электростатики одинаковы. Вектор потока тепла h соответствует Е, а тем­пература Т соответствует j.

Фиг. 12.1. Поток тепла в случае цилиндрической симметрии (а) и соответствующая задача из элек­тричества (б).

Мы уже отмечали, что точечный тепловой источник создает поле температур, меняющееся, как 1/r, и поток тепла, меняющийся, как 1/r2. Это есть не более чем простой перенос утвержде­ний электростатики, что точечный заряд дает потенциал, меняющийся, как 1/r, и электрическое поле, меня­ющееся, как 1/r2. Вообще мы можем решать статистические тепловые за­дачи с той же степенью легкости, как и задачи электростатики.

Рассмотрим простой пример. Пусть имеется цилиндр с ра­диусом а при температуре T1? поддерживающейся за счет гене­рации тепла в цилиндре. (Это может быть, скажем, проволока, по которой течет ток, или трубка с конденсацией пара внутри цилиндра.) Цилиндр покрыт концентрической обшивкой из изолирующего материала с теплопроводностью К. Пусть внеш­ний радиус изоляции равен b, а в наружном пространстве под­держивается температура T2 (фиг. 12. 1, а). Нам нужно опреде­лить скорость потери тепла проволокой или паропроводом (все равно чем), проходящим по центру цилиндра. Пусть полное количество тепла, теряемого на длине трубы L, равно G, его-то мы и хотим найти.

Как надо решать такую задачу? У нас есть дифференциаль­ные уравнения, но поскольку они такие же, как в электроста­тике, то математическое решение их нам уже известно. Анало­гичная задача электростатики относится к проводнику радиу­сом а при потенциале j1, отделенном от другого проводника радиусом b при потенциале j2, с концентрическим слоем ди­электрика между ними (фиг. 12.1, б). Далее, поскольку поток тепла h соответствует электрическому полю Е, то наша искомая величина G соответствует потоку электрического поля от единичной длины (другими словами, электрическому заряду на единице длины, деленному на e0). Мы решали электростати­ческую задачу с помощью закона Гаусса. Нашу задачу о потоке тепла будем решать таким же способом.

Из симметрии задачи мы видим, что h зависит только от расстояния до центра. Поэтому мы окружим трубку гауссовой поверхностью — цилиндром длиной L и радиусом r. С помощью закона Гаусса мы выводим, что поток тепла h, умноженный на площадь поверхности 2prL, должен быть равен полному количеству тепла, рождаемому внутри, т. е. тому, что мы назвали G:

(12.9)

Поток тепла пропорционален градиенту температуры

или в данном случае величина h равна

 

Вместе с (12.9) это дает

(12.10)

Интегрируя от r=а до r=b, получаем

(12.11)

Разрешая отнсительно G, находим

(12.12)

Этот результат в точности соответствует формуле для заряда цилиндрического конденсатора:

Задачи одинаковые и имеют одинаковые решения. Зная электро­статику, мы тем самым знаем, сколько тепла теряет изолирован­ная труба.

Рассмотрим еще один пример. Пусть мы хотим узнать поток тепла в окрестности точечного источника, расположенного неглубоко под поверхностью земли или же вблизи поверхности большого металлического предмета. В качестве локализованно­го источника тепла может быть и атомная бомба, которая взор­валась под землей и представляет собой мощный источник тепла, или же небольшой источник радиоактивности внутри железного блока — возможностей очень много.

Рассмотрим идеализированную задачу о точечном источнике тепла, мощность которого G, на расстоянии а под поверхностью бесконечной однородной среды с коэффициентом теплопровод­ности К. Теплопроводностью воздуха над поверхностью среды мы пренебрежем. Мы хотим определить распределение темпе­ратуры на поверхности среды. Насколько горячо будет прямо над источником и в разных местах на поверхности?

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное