Читаем Feynmann 5b полностью

Подумаем теперь о том, почему магнитные силы дей­ствуют на провода, по которым течет электрический ток. Для этого определим, что понимается под плотностью тока. Элект­рический ток состоит из движущихся электронов или дру­гих зарядов, которые образуют результирующее течение, или поток. Мы можем представить поток зарядов вектором, опре­деляющим количество зарядов, которое проходит в единицу времени через единичную площадку, перпендикулярную по­току (точь-в-точь как мы это делали, определяя поток тепла). Назовем эту величину плотностью тока и обозначим ее век­тором j. Он направлен вдоль движения зарядов. Если взять маленькую площадку Dа в данном месте материала, то коли­чество зарядов, текущее через площадку в единицу времени, равно

nDa, (13.2)

где n — единичный вектор нормали к Dа.

Плотность тока связана со средней скоростью течения зарядов. Предположим, что имеется распределение зарядов, в среднем дрейфующих со скоростью v. Когда это распределе­ние проходит через элемент поверхности Dа, то заряд Dq, проходящий через Dа за время Dt, равен заряду, содержащемуся в параллелепипеде с основанием Dа и высотой vDt (фиг. 13.2).

Фиг. 13.2. Если распределение зарядов с плотностью r дви­жется со скоростью v, то коли­чество заряда, проходящее в единицу времени через площад­ку Dа,есть rv·nDа.

Объем параллелепипеда есть произведение проекции Dа, пер­пендикулярной к v, на vDt, а умножая его на плотность заря­дов r, получаем Dq. Таким образом,

Dq = rv·nDaDt.

Заряд, проходящий в единицу времени, тогда равен рv·nDа, откуда получаем

j = pv. (13.3)

Если распределение зарядов состоит из отдельных зарядов, скажем электронов с зарядом q, движущихся со средней ско­ростью v, то плотность тока равна

j = Nqv, (13.4)

где N — число зарядов в единице объема.

Полное количество заряда, проходящее в единицу времени через какую-то поверхность S, называется электрическим то­ком I. Он равен интегралу от нормальной составляющей потока по всем элементам поверхности (фиг. 13.3):

Фиг. 13.3. Ток I через поверх­ность S равен j·nda

Фиг. 13.4. Интеграл от j·n no замкнутой по­верхности равен скоро­сти изменения полного заряда Q внутри.

Ток I из замкнутой поверхности S представляет собой ско­рость, с которой заряды покидают объем V, окруженный по­верхностью 5. Один из основных законов физики говорит, что электрический заряд неуничтожаем; он никогда не теряется и не создается. Электрические заряды могут перемещаться с места на место, но никогда не возникают из ничего. Мы го­ворим, что заряд сохраняется. Если из замкнутой поверхности возникает результирующий ток, то количество заряда внутри должно соответственно уменьшаться (фиг. 13.4). Поэтому мы можем записать закон сохранения заряда в таком виде:

(13.6)

Заряд внутри можно записать как объемный интеграл от плот­ности заряда

(13.7)

Применяя (13.6) к малому объему DV, можно учесть, что интеграл слева есть С·jDV. Заряд внутри равен rDV, поэтому сохранение заряда можно еще записать и так:

(13.8)

(опять теорема Гаусса из математики!).

§ 3. Магнитная сила, действующая на ток

Теперь мы достаточно подготовлены, чтобы определить силу, действующую на находящуюся в магнитном поле проволоку, по которой идет ток. Ток состоит из заряженных частиц, дви­жущихся по проволоке со скоростью v. Каждый заряд чувствует поперечную силу F = qvXB (фиг. 13.5, а).

Фиг. 13.5. Магнитная сила на проволоку с током равна сумме сил на отдельные движу­щиеся заряды

Если в еди­ничном объеме таких за­рядов имеется N, то их число в малом объеме внутри проволоки DV рав­но NDV. Полная магнит­ная сила DV, действую­щая на объем DV, есть. сумма сил на отдельные заряды

Ho Nqv ведь как раз равно j, так что

(13.9)

(фиг. 13.5, б). Сила, действующая на единицу объема, равна JXB.

Если по проволоке с поперечным сечением А равномерно по сечению течет ток, то можно в качестве элемента объема взять цилиндр с основанием А и длиной DL. Тогда

DF = jXBDL. (13.10)

Теперь можно jA назвать вектором тока I в проволоке. (Его величина есть электрический ток в проволоке, а его направле­ние совпадает с направлением проволоки.) Тогда

DF=IXBDL. (13.11)

Сила, действующая на единицу длины проволоки, есть IXB.

Это уравнение содержит важный результат — магнитная

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука