Потенциал заряженного цилиндра пропорционален lnr'; потенциал пары тогда равен
Итак, мы знаем, что
(14.25)
где К — некоторая константа. Рассуждая точно так же, найдем
(14.26)
Хотя мы раньше говорили, что вне соленоида магнитного поля нет, теперь мы находим, что поле А существует и циркулирует вокруг оси z (см. фиг. 14.4). Возникает вопрос: равен ли нулю его ротор?
Очевидно, Вх и Вy равны нулю, а
Итак, магнитное поле вне очень длинного соленоида действительно равно нулю, хотя векторный потенциал нулю не равен.
Мы можем проверить наш результат, прибегнув к другим соображениям. Циркуляция векторного потенциала вокруг соленоида должна равняться потоку В внутри катушки [уравнение (14.11)]. Циркуляция равна А·2pr' или, поскольку А=К1r', она равна 2pК. Заметьте, что циркуляция не зависит от r'. Так и должно быть, если В вне соленоида отсутствует, потому что поток есть просто величина В внутри соленоида, умноженная на pа2. Он один и тот же для всех окружностей с радиусом r'>а. Раньше мы нашли, что поле внутри равно n//e0c2, поэтому мы можем определить константу К:
или
Итак, векторный потенциал снаружи имеет величину
(14.27)
и всегда перпендикулярен вектору r'.
Мы говорили о соленоидальной катушке из проволоки, но такое же поле мы могли бы создать, вращая длинный цилиндр с электростатическим зарядом на поверхности. Если у нас есть тонкий цилиндрический слой радиуса а с поверхностным зарядом s, то вращение цилиндра образует поверхностный ток J=sv, где v=sw — скорость поверхностного заряда. Внутри цилиндра тогда будет магнитное поле B=saw/e0с2.
Теперь можно поставить интересный вопрос. Предположим, что перпендикулярно к оси цилиндра мы поместили короткий отрезок проволоки W от оси до поверхности и прикрепили ее к цилиндру так, что проволока вращается вместе с ним (фиг. 14.5). Эта проволока движется в магнитном поле, так что сила vXB приведет к тому, что концы проволоки зарядятся (они будут заряжаться до тех пор, пока поле Е зарядов не уравновесит силы vXB). Если цилиндр заряжен положительно, то конец проволоки вблизи оси будет иметь отрицательный заряд. Измеряя заряд на конце проволоки, мы могли бы определить скорость вращения системы. Мы получили бы «угловой скоростемер» (или «угловой ситометр»)!
Но вы, наверно, засомневаетесь: «А что, если я сам перейду,— скажете вы,— в систему координат вращающегося цилиндра? Там заряженный цилиндр покоится, а я знаю из электростатических уравнений, что внутри цилиндра никакого поля не будет, не будет и силы, толкающей заряды к центру. Поэтому здесь что-то не так?» Нет. Все правильно.
Фиг. 14.5. Вращающийся заряженный цилиндр создает внутри себя магнитное поле.
Короткая проволока, закрепленная вдоль радиуса, вращаясь вместе с цилиндром, приобретает на своих концах индуцированные заряды.
«Относительности вращения» не существует. Вращающаяся система — не инерциальная система, и законы физики в ней другие. Мы должны пользоваться уравнениями электромагнетизма только в инерциальных системах координат.
Было бы здорово, если бы смогли измерить абсолютное вращение Земли с помощью такого заряженного цилиндра, но эффект, к несчастью, настолько мал, что его невозможно наблюдать даже с помощью самых тонких современных приборов.
§ 5. Поле маленькой петли; магнитный диполь
Воспользуемся методом векторного потенциала, чтобы найти магнитное поле маленькой петли с током. Как обычно, под словом «маленькая» мы просто подразумеваем, что нас интересуют поля только на больших расстояниях по сравнению с размером петли. Как мы увидим, любая петелька представляет собой «магнитный диполь». Это значит, что она создает магнитное поле, подобное электрическому полю от электрического диполя.
Возьмем сначала прямоугольную петлю и выберем оси координат, как показано на фиг. 14.6. Токов в направлении z нет, поэтому Az равно нулю. Есть токи в направлении х по обеим сторонам прямоугольника, длина которых а. В каждой стороне плотность тока и ток однородны. Поэтому решение для Ах в точности подобно электростатическому потенциалу от двух заряженных палочек (фиг. 14.7). Поскольку палочки имеют противоположные заряды, их электрический потенциал на больших расстояниях есть как раз дипольный потенциал (см. гл. 6,
§ 5). В точке Р на фиг. 14.6 потенциал равен
(14.28)
где р — дипольный момент распределения зарядов. В данном случае дипольный момент равен полному заряду на одной палочке, умноженному на расстояние между ними:
(14.29)
Дипольный момент смотрит в отрицательном направлении y, поэтому косинус угла между R и р равен —ylR (где у — координата Р). Итак, мы имеем
Заменяя l на I/с2, сразу же получаем Ах:
(14.30)
С помощью тех же рассуждений:
(14.31)