Снова
Величина А пропорциональна I
(14.32)
Векторный потенциал маленькой плоской петельки
(14.33)
Мы предоставляем вам право это доказать.
Нашему уравнению можно придать векторную форму, если определить вектор m как нормаль к плоскости петли с положительным направлением, определяемым по правилу правой руки (см. фиг. 14.8). Тогда можно написать
(14.34)
Нам еще нужно найти В. Пользуясь (14.33) и (14.34), а также (14.4). получаем
(14.35)
(под многоточием мы подразумеваем m/4pe0с2),
Компоненты поля В ведут себя точно так же, как компоненты поля Е для диполя, ориентированного вдоль оси z [см. уравнения (6.14) и (6.15), а также фиг. 6.5, стр. 115]. Вот почему мы называем петлю магнитным диполем. Слово «диполь» в применении к магнитному полю немного запутывает, потому что
В общем-то довольно любопытно, что, начав с совсем разных законов, С·Е=r/e0 и СXВ=j/e0с2, можно прийти к полю одного и того же вида. Почему так получается? Потому что дипольные поля возникают, только когда мы находимся далеко от всех токов и зарядов. Тогда в большей части пространства уравнения для Е и В одинаковы: у обоих дивергенция и ротор равны нулю. Следовательно, они дают одни и те же решения. Однако
§ 6. Векторный потенциал цепи
Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упростить уравнения для магнитного поля.
Для тонкого провода элемент объема можно записать в виде
где
(14.37)
Ho
(14.38)
(фиг. 14.10). (Мы предполагаем, что / одно и то же вдоль всего контура. Если есть несколько ответвлений с разными токами, то следует, конечно, брать соответствующий ток в каждой ветви.)
Как и раньше, можно найти поле с помощью (14.38) либо прямым интегрированием, либо решая соответствующую электростатическую задачу.
§ 7. Закон Био— Савара
В ходе изучения электростатики мы нашли, что электрическое поле известного распределения зарядов может быть получено сразу в виде интеграла [уравнение (4.16)]
Как мы видели, вычислить этот интеграл (а их на самом деле три, по одному на каждую компоненту) обычно бывает труднее, чем вычислить интеграл для потенциала и взять от него градиент.
Подобный интеграл связывает и магнитное поле с токами. Мы уже имеем интеграл для А [уравнение (14.19)]; мы можем получить интеграл и для В, если возьмем ротор от обеих частей:
А теперь мы должны быть осторожны. Оператор ротора означает взятие производных от А(1), т. е. он действует только на координаты (x1, y1, z1). Можно внести оператор СX под интеграл, если помнить, что он действует только на переменные со значком 1, которые появляются, конечно, только в
Мы получаем для x-компоненты В:
(14.41)
Величина в скобках есть просто x-компонента от
Такие же результаты получаются и для других компонент, и мы имеем
(14.42)