Неожиданно сложной оказывается следующая проблема в теории диэлектриков: почему заряженное тело подбирает маленькие кусочки диэлектрика? Если вы в сухой день причесываетесь, то ваша расческа потом легко будет подбирать маленькие кусочки бумаги. Если вы не вдумались в этот вопрос, то, вероятно, сочтете, что на расческе заряды одного знака, а на бумаге противоположного. Но бумага ведь была сначала электрически нейтральной. У нее нет суммарного заряда, а она все же притягивается. Правда, иногда бумажки подскакивают к расческе, а затем отлетают, сразу же отталкиваясь от нее. Причина, конечно, заключается в том, что, коснувшись расчески, бумага сняла с нее немного отрицательных зарядов, а одноименные заряды отталкиваются. Но это все еще не дает ответа на первоначальный вопрос. Прежде всего, почему бумажки вообще притягиваются к расческе?
Ответ заключается в поляризации диэлектрика, помещенного в электрическое поле. Возникают поляризационные заряды обоих знаков, притягиваемые и отталкиваемые расческой. Однако в результате получается притяжение, потому что поле поблизости от расчески сильнее, чем вдали от нее, ведь расческа не бесконечна. Ее заряд локализован. Нейтральный кусочек бумаги не притянется ни к одной из параллельных пластин конденсатора. Изменение поля составляет существенную часть механизма притяжения.
Как показано на фиг. 10.8, диэлектрик всегда стремится из области слабого поля в область, где поле сильнее. В действительности можно показать, что сила, действующая на малые объекты, пропорциональна градиенту
Есть еще одна близкая задача, в которой сила, действующая на диэлектрик, может быть найдена точно. Если мы возьмем плоский конденсатор, в котором плитка диэлектрика задвинута лишь частично (фиг. 10.9), то возникнет сила, вдвигающая диэлектрик внутрь. Провести детальное исследование силы очень трудно; оно связано с неоднородностями поля вблизи концов диэлектрика и пластин. Однако если мы не интересуемся деталями, а просто используем закон сохранения энергии, то силу легко вычислить. Мы можем определить силу с помощью ранее выведенной формулы. Уравнение (10.28) эквивалентно
(10.30)
Нам осталось только найти, как меняется емкость в зависимости от положения плитки диэлектрика.
Пусть полная длина пластин есть L, ширина их равна
xe0V/d. Следовательно, полный заряд пластин равен
откуда мы находим емкость
(10.31)
С помощью (10.30) получаем
(10.32)
Но пользы от этого выражения не очень много, разве только вам понадобится определить силу именно в таких условиях. Мы хотели лишь показать, что можно подчас избежать страшных осложнений при определении сил, действующих на диэлектрики, если пользоваться энергией, как это было в настоящем случае.
В нашем изложении теории диэлектриков мы имели дело только с электрическими явлениями, принимая как факт, что поляризация вещества пропорциональна электрическому полю. Почему возникает такая пропорциональность — вопрос, представляющий, пожалуй, еще больший интерес для физики. Стоит нам понять механизм возникновения диэлектрической проницаемости с атомной точки зрения, как мы сможем использовать измерения диэлектрической проницаемости в изменяющихся условиях для получения подробных сведений о строении атомов и молекул. Эти вопросы будут частично изложены в следующей главе.
ВНУТРЕННЕЕ УСТРОЙСТВО ДИЭЛЕКТРИКОВ
§1. Молекулярные диполи
§2. Электронная поляризация
§3. Полярные молекулы; ориентационная поляризация
§4. Электрические поля в пустотах диэлектрика