Читаем Feynmann 5b полностью

§5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти

§6. Твердые диэлектрики

§7. Сегнетоэлектричество; титанат бария

Повторить: гл. 3 (вып. 3) «Как возникает показатель преломления», гл. 40 (вып. 4) «Принципы статистической механики »

§ 1. Молекулярные диполи

В этой главе мы поговорим о том, почему вещество бывает диэлектриком. В предыдущей главе мы указывали, что свойства электри­ческих систем с диэлектриками можно было бы понять, предположив, что электрическое поле, действуя на диэлектрик, индуцирует в атомах дипольный момент. Именно, если элект­рическое поле Е индуцирует средний диполь­ный момент в единице объема Р, то диэлектри­ческая проницаемость х дается выражением

(11.1)

О применениях этого выражения мы уже говорили; сейчас же нам нужно обсудить меха­низм возникновения поляризации внутри ма­териала под действием электрического поля. Начнем с самого простого примера — поляри­зации газов. Но даже в газах возникают слож­ности: существуют два типа газов. Молекулы некоторых газов, например кислорода, в каж­дой молекуле которого имеются два симметрич­ных атома, лишены собственного дипольного момента. Зато молекулы других газов, вроде водяного пара (у которого атомы водорода и кислорода образуют несимметричную молекулу), обладают постоянным электрическим дипольным моментом. Как мы отмечали в гл. 6 и 7, в молекуле водяного пара атомы водорода в среднем имеют положительный заряд, а атом кислорода — отрицательный. Поскольку цент­ры тяжести положительного и отрицательного зарядов не совпадают, то распределение всего заряда в молекуле обладает дипольным моментом.

Фиг. 11.1. Молекула кислорода с нулевым дипольным моментом (а) и моле­кула воды с постоянным дипольным моментом р0 (б).

Такая молекула называется полярной молекулой. А у кисло­рода вследствие симмет­рии молекулы центр тяжести и положитель­ных, и отрицательных зарядов один и тот же, так что это неполярная молекула. Она, правда,

может стать диполем, если ее поместить в электрическое поле. Формы этих двух типов молекул нарисованы на фиг. 11.1.

§ 2. Электронная поляризация

Займемся сначала поляризацией неполярных молекул. Начнем с простейшего случая одноатомного газа (например, гелия). Когда атом такого газа находится в электрическом поле, электроны его тянутся в одну сторону, а ядро — в другую, как показано на рис. 10.4 (стр. 200). Хотя атомы имеют очень боль­шую жесткость по отношению к электрическим силам, которые мы можем приложить к ним на опыте, центры зарядов чуть-чуть смещаются относительно друг друга и индуцируется дипольный момент. В слабых полях величина смещения, а следовательно, и дипольного момента пропорциональна напряженности элект­рического поля. Смещение электронного распределения, ко­торое приводит к этому типу индуцированного дипольного момента, называется электронной поляризацией.

Мы уже обсуждали воздействие электрического поля на атом в гл. 31 (вып. 3), когда занимались теорией показателя преломления. Подумав немного, вы сообразите, что теперь нужно сделать то же, что и тогда. Только теперь нас заботят поля, не меняющиеся со временем, тогда как показатель пре­ломления был связан с полями, зависящими от времени.

В гл. 31 (вып. 3) мы предполагали, что центр электронного заряда атома, помещенного в осциллирующее электрическое поле, подчиняется уравнению

(11.2)

Первый член — это произведение массы электрона на его ускорение, а второй — возвращающая сила; справа стоит сила, действующая со стороны внешнего электрического поля. Если электрическое поле меняется с частотой w, то уравнение (11.2)

допускает решение

(11.3)

имеющее резонанс при w=w0. Когда раньше мы нашли это решение, то интерпретировали w0 как частоту, при которой атом поглощает свет (она лежит либо в оптической, либо в ультрафиолетовой области, в зависимости от атома). Для нашей цели, однако, достаточно случая постоянных полей, т.е. w=0; поэтому мы можем пренебречь членом с ускорением в (11.2) и получаем смещение

(11.4)

Отсюда находим дипольный момент р одного атома

(11.5)

В таком подходе дипольный момент р действительно пропор­ционален электрическому полю. Обычно пишут

(11.6)

(Снова e0 вошло по историческим причинам.) Постоянная a называется поляризуемостью атома и имеет размерность L3. Это мера того, насколько легко индуцировать электрическим полем дипольный момент у атома. Сравнивая

(11.5) и (11.6), получаем, что в нашей простой теории

(11.7)

Если в единице объема содержится N атомов, то поляри­зация (дипольный момент единицы объема) дается формулой

(11.8)

Объединяя (11.1) и (11.8), получаем

(11.9)

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука