Читаем Feynmann 6 полностью

Так что с помощью нашего принципа можно подсчитать и емкость С. Если же мы возьмем неправильное распределение потенциала и попытаемся этим методом прикинуть емкость конденсатора, то придем к чересчур большому значению емкости при фикси­рованном V. Любой предполагаемый потенциал j, не точно совпадающий с истинным его значением, приведет и к невер­ной величине С, большей, чем нужно. Но если неверно выбран­ный потенциал j является еще грубым приближением, то ем­кость С получится уже с хорошей точностью, потому что по­грешность в С — величина второго порядка по сравнению с погрешностью в j.

Предположим, что мне неизвестна емкость цилиндрического конденсатора. Тогда, чтобы узнать ее, я могу воспользоваться этим принципом. Я просто буду испытывать в качестве потен­циала разные функции j до тех пор, пока не добьюсь наиниз­шего значения С. Допустим, к примеру, что я выбрал потен­циал, отвечающий постоянному полю. (Вы, конечно, знаете, что на самом деле поле здесь не постоянно; оно меняется как 1/r.) Если поле постоянно, то это означает, что потенциал ли­нейно зависит от расстояния. Чтобы напряжение на провод­никах было каким нужно, функция j должна иметь вид

Эта функция равна V при r=а, нулю при r=b, а между ними имеется постоянный наклон, равный —V/(b-а). Значит, чтобы определить интеграл U*, надо только помножить квадрат этого градиента на e0/2 и проинтегрировать по всему объему. Проведем этот расчет для цилиндра единичной длины. Элемент объема при радиусе r равен 2prdr. Проводя интегрирование, я нахожу, что моя первая проба дает такую емкость:

Интеграл здесь просто равен

Так я получаю формулу для емкости, которая хотя и непра­вильна, но является каким-то приближением:

Конечно, она отличается от правильного ответа C=2pe0/ln(b/a), но в общем-то, она не так уж плоха. Давайте попробуем срав­нить ее с правильным ответом для нескольких значений b/а. Вычисленные мною числа приведены в следующей таблице

Даже когда b/a=2 (а это приводит уже к довольно большим отличиям между постоянным и линейным полем), я все еще получаю довольно сносное приближение. Ответ, конечно, как и ожидалось, чуть завышен. Но если тонкую проволочку по­местить внутри большого цилиндра, то все выглядит уже го­раздо хуже. Тогда поле изменяется очень сильно и замена его постоянным полем ни к чему хорошему не приводит. При b/а=100 мы завышаем ответ почти вдвое. Для малых bполо­жение выглядит намного лучше. В противоположном пределе, когда промежуток между проводниками не очень широк (ска­жем, при b/а=1,1), постоянное поле оказывается весьма хорошим приближением, оно дает значение С с точностью до десятых процента.

А теперь я расскажу вам, как усовершенствовать этот рас­чет. (Ответ для цилиндра вам, разумеется, известен, но тот же способ годится и для некоторых других необычных форм кон­денсаторов, для которых правильный ответ вам может быть и не известен.) Следующим шагом будет подыскание лучшего приближения для неизвестного нам истинного потенциала j. Скажем, можно испытать константу плюс экспоненту j и т. д. Но как вы узнаете, что у вас получилось лучшее приближение, если вы не знаете истинного j? Ответ: Подсчитайте С; чем оно ниже, тем к истине ближе. Давайте проверим эту идею. Пусть потенциал будет не линейным, а, скажем, квадратичным по r, а электрическое поле не постоянным, а линейным. Самая общая квадратичная

форма, которая обращается в j =0 при r=b и в j =V при r=а, такова:

где a — постоянное число. Эта формула чуть сложнее прежней. В нее входит и квадратичный член, и линейный. Из нее очень легко получить поле. Оно равно просто

Теперь это нужно возвести в квадрат и проинтегрировать по объему. Но погодите минутку. Что же мне принять за a? За j я могу принять параболу, но какую? Вот что я сделаю: подсчитаю емкость при произвольном a. Я получу

Это выглядит малость запутанно, но так уж выходит после интегрирования квадрата поля. Теперь я могу выбирать себе а. Я знаю, что истина лежит ниже, чем все, что я собираюсь вычислить. Что бы я ни поставил вместо a, ответ все равно полу­чится слишком большим. Но если я продолжу свою игру с а и постараюсь добиться наинизшего возможного значения С, то это наинизшее значение будет ближе к правде, чем любое другое значение. Следовательно, мне теперь надо подобрать а так, чтобы значение С достигло своего минимума. Обращаясь к обычному дифференциальному исчислению, я убеждаюсь, что минимум С будет тогда, когда a=-2b/(b+а). Подставляя это значение в формулу, я получаю для наименьшей емкости

Я прикинул, что дает эта формула для С при различных значениях b/а. Эти числа я назвал С (квадратичные). Привожу таблицу, в которой сравниваются С (квадратичные) с С (истин­ными).

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука