Например, когда отношение радиусов равно 2:1, я получаю 1,444. Это очень хорошее приближение к правильному ответу, 1,4423. Даже при больших
Я привел все эти примеры, во-первых, чтобы продемонстрировать теоретическую ценность принципа минимального действия и вообще всяких принципов минимума, и, во-вторых, чтобы показать вам их практическую полезность, а вовсе не для того, чтобы подсчитать емкость, которую мы и так великолепно знаем. Для любой другой формы вы можете испробовать приближенное поле с несколькими неизвестными параметрами (наподобие а) и подогнать их под минимум. Вы получите превосходные численные результаты в задачах, которые другим способом не решаются.
Добавление, сделанное после лекции
Мне не хватило времени на лекции, чтобы сказать еще об одной вещи (всегда ведь готовишься рассказать больше, чем успеваешь). И я хочу сделать это сейчас. Я уже упоминал о том, что, готовясь к этой лекции, заинтересовался одной задачей. Мне хочется вам рассказать, что это за задача. Я заметил, что большая часть принципов минимума, о которых шла речь, в той или иной форме вытекает из принципа наименьшего действия механики и электродинамики. Но существует еще класс принципов, оттуда не вытекающих. Вот пример. Если сделать так, чтобы токи протекали через массу вещества, удовлетворяющего закону Ома, то токи распределятся в этой массе так, чтобы скорость, с какой генерируется в ней тепло, была наименьшей. Можно также сказать иначе (если температура поддерживается постоянной): что скорость выделения энергии минимальна. Этот принцип, согласно классической теории, выполняется даже в распределении скоростей электронов внутри металла, по которому течет ток. Распределение скоростей не совсем равновесно [см. гл. 40 (вып. 4), уравнение (40.6)], потому что они медленно дрейфуют в стороны. Новое распределение можно найти из того принципа, что оно при данном токе должно быть таково, что развивающаяся в секунду за счет столкновений энтропия уменьшится настолько, насколько это возможно. Впрочем, правильное описание поведения электронов должно быть квантовомеханическим. Так вот в чем состоит вопрос: должен ли этот самый принцип минимума развивающейся энтропии соблюдаться и тогда, когда положение вещей описывается квантовой механикой? Пока мне не удалось это выяснить.
Вопрос этот интересен, конечно, и сам по себе. Подобные принципы возбуждают воображение, и всегда стоит попробовать выяснить, насколько они общи. Но мне
РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА В ПУСТОМ ПРОСТРАНСТВЕ
§ 1. Волны в пустом пространстве; плоские волны
§ 2. Трехмерные волны
§ 3. Научное воображение
§ 4. Сферические волны
§ 1. Волны в пустом пространстве; плоские волны
В гл. 18 мы достигли того, что уравнения Максвелла появились в полном виде. Все, что есть в классической теории электрических и магнитных полей, вытекает из четырех уравнений: