Читаем Feynmann 6 полностью

Прежде чем сделать это, мы хотим, однако, поставить один интересный и важный вопрос. Вы помните, что в вектор-потен­циальной функции есть некоторый произвол. Две разные век­тор-потенциальные функции А и А', отличающиеся на гра­диент Сy некоторой скалярной функции, представляют одно и то же магнитное поле (потому что ротор градиента равен нулю). Они поэтому приводят к одной и той же классической силе qvXВ. Если в квантовой механике все эффекты зависят от векторного потенциала, то какая из многих возможных А-функций правильна?

Ответ состоит в том, что в квантовой механике продолжает существовать тот же произвол в А. Если в уравнении (15.33) мы заменим А на А' = А+Сy, то интеграл от А пре­вратится в

Интеграл от Сy вычисляется по замкнутому пути (1—2); но интеграл от касательной составляющей градиента по замкну­тому пути всегда равен нулю (по теореме Стокса). Поэтому как А, так и А' приводят к одним и тем же разностям фаз и к од­ним и тем же квантовомеханическим эффектам интерференции. И в классической, и в квантовой теории важен только ротор 4; любая функция А, у которой ротор такой, как надо, приводит к правильной теории.

Тот же вывод становится очевидным, если мы используем результаты, приведенные в гл. 14, § 1. Там мы показали, что контурный интеграл от А по замкнутому пути равен потоку В через контур, в данном случае потоку между путями (1) и (2). Уравнение (15.33) можно, если мы хотим, записать в виде

где под потоком В, как обычно, подразумевается поверхностный интеграл от нормальной составляющей В. Результат зависит только от В, т. е. только от ротора А.

Но раз результат можно выражать и через В и через А, то может создаться впечатление, что В удерживает свои позиции «реального» поля, а А все еще выглядит искусственным образо­ванием. Но определение «реального» поля, которое мы вначале предложили, основывалось на идее о том, что «реальное» поле не смогло бы действовать на частицу на расстоянии. Мы же беремся привести пример, в котором В равно нулю (или по крайней мере сколь угодно малому числу) в любом месте, где частицы могут оказаться, так что невозможно представить себе, что В непосредственно действует на них.

Вы помните, что если имеется длинный соленоид, по кото­рому течет электрический ток, то поле В существует внутри него, а снаружи поля нет, тогда как множество векторов А циркулирует снаружи соленоида (фиг. 15.6). Если мы создадим такие условия, что электроны будут проходить только вне соле­ноида (только там, где есть А), то, согласно уравнению (15.33),

соленоид будет все же влиять на их движение.

Фиг. 15.6. Магнитное поле и векторный потенциал длинного соленоида.

По классическим же воззрениям это невозможно. По классическим представлениям сила зависит только от В. Чтобы узнать, течет ли по соле­ноиду ток, частица должна пройти сквозь него. А квантовая механика утверждает, что наличие магнитного поля в соле­ноиде можно установить, просто обойдя его, даже не прибли­жаясь к нему вплотную!

Представьте, что мы поместили очень длинный соленоид ма­лого диаметра прямо тут же за стенкой между двумя щелями (фиг. 15.7). Диаметр соленоида должен быть намного меньше расстояния d между щелями. В этих обстоятельствах дифракция электронов на щели не приведет к заметным вероятностям того, что электроны проскользнут где-то близ соленоида. Как же все это повлияет на наш интерференционный эксперимент?

Сравним два случая: когда ток по соленоиду идет и когда тока нет. Если тока нет, то нет ни В ни А, и получается перво­начальная картина электронных интенсивностей вдоль поглотителя.

Фиг. 15.7. Магнитное поле способно влиять на движение элек­тронов, даже когда оно существует только в области, еде вероят­ность обнаружить электрон пренебрежимо мала.

Если мы включим ток и создадим внутри соленоида магнитное поле В, то снаружи появится поле А. Возникнет сдвиг в разности фаз, пропорциональный циркуляции А вне соленоида, а это означает, что картина максимумов и миниму­мов сдвинется на другое место. Действительно, раз поток В между любыми двумя путями постоянен, то точно так же по­стоянна и циркуляция А. Для любой точки прибытия фаза ме­няется одинаково; это соответствует тому, что вся картина сдвигается по х на постоянную величину, скажем, на х0. Эту величину х0 легко подсчитать. Максимальная интенсивность возникает там, где разность фаз двух волн равна нулю. Под­ставляя вместо d выражение (15.32) или (15.33), а вместо d (B=0) выражение (15.28), получаем

(15.35)

или

(15.36)

Картина при наличии соленоида будет выглядеть так, как показано на фиг. 15.7. По крайней мере так предсказывает квантовая механика.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука