Недавно был проделан точно такой же опыт. Это чрезвычайно сложный опыт. Длина волны электронов крайне мала, поэтому прибор должен быть миниатюрным, иначе интерференции не заметишь. Щели должны лежать вплотную друг к другу, а это означает, что нужен необычайно тонкий соленоид. Оказывается, что при некоторых обстоятельствах кристаллы железа вырастают в виде очень длинных и микроскопически тонких нитей. Если эти железные нити намагнитить, они образуют маленький соленоид, у которого нет снаружи магнитного поля (оно проявляется только на концах). Так вот, был проделан опыт по интерференции электронов с железной нитью, помещенной между двумя щелями, и предсказанное смещение электронной картины подтвердилось.
А тогда поле А в нашем смысле уже «реально». Вы можете возразить: «Но ведь там есть магнитное поле». Да, есть, но вспомните нашу исходную идею — «реально» только такое поле, которое, чтобы определить собой движение частицы, должно быть задано
Эта проблема имеет интересную историю. Теория, которую мы изложили, была известна с самого возникновения квантовой механики, с 1926 г. Сам факт, что векторный потенциал появляется в волновом уравнении квантовой механики (так называемом уравнении Шредингера), был очевиден с того момента, как оно было написано. В том, что он не может быть заменен магнитным полем, убеждались все, кто пытался это проделать; друг за другом все убеждались, что простого пути для этого не существует. Это ясно и из нашего примера, когда электрон движется по области, где нет никакого поля, и тем не менее подвергается воздействию. Но, поскольку в классической механике А, по-видимому, не имело непосредственного, важного значения и, далее, из-за того, что его можно было менять добавлением градиента, люди еще и еще раз повторяли, что векторный потенциал не обладает прямым физическим смыслом, что даже в квантовой механике «правами» обладают только электрические и магнитные поля. Когда оглядываешься назад, кажется странным, что никто не подумал обсудить этот опыт вплоть до 1956 г., когда Бом и Аронов впервые предложили его и сделали весь вопрос кристально ясным. Все это ведь всегда подразумевалось, но никто не обращал на это внимания. И многие были просто потрясены, когда всплыл этот вопрос. Вот по этой-то причине кое-кто и счел нужным поставить опыт и убедиться, что все это действительно так, хотя квантовая механика, в которую все мы верим вот уже сколько лет, давала вполне недвусмысленный ответ. Занятно, что подобные вещи могут тридцать лет быть на виду у всех, но из-за определенных предрассудков относительно того, что существенно, а что нет, могут всеми игнорироваться.
Сейчас мы хотим немного продолжить наш анализ. Мы продемонстрируем связь между квантовомеханической и классической формулами, чтобы показать, почему оказывается, что при макроскопическом взгляде на вещи все выглядит так, как будто частицы управляются силой, равной произведению
Как мы видели, они различаются просто на поток В между этими путями. В нашем приближении поток равен
(15.37)
Мы замечаем, что в принятом приближении сдвиг фаз не зависит от угла. Так что опять-таки эффект сводится к сдвигу всей картины вверх на величину
Подставляя d-d
(15.38)
Такой сдвиг равноценен тому, что все траектории отклоняются на небольшой угол
(15.39)
По классическим воззрениям мы тоже должны были ожидать, что узкая полоска магнитного поля отклонит все траектории на какой-то маленький угол, скажем a' (фиг. 15.9,а). Когда электроны проходят через магнитное поле, они подвергаются действию поперечной силы
(15.40)