Потенциал Юкавы благодаря экспоненциальному множителю угасает быстрее, чем 1/r. Как это видно из фиг. 28.6, для расстояний, превышающих 1/m, потенциал, а следовательно, и ядерные силы приближаются к нулю гораздо быстрее, чем 1/r. Поэтому «радиус действия» ядерных сил гораздо меньше «радиуса действия» электростатических. Экспериментально доказано, что ядерные силы не простираются на расстояния свыше 10-13
m»1015
И, наконец, давайте рассмотрим волновое решение уравнения (28.17). Если мы подставим в него
то получим
Связывая теперь частоту с энергией, а волновое число с импульсом, как это делалось в конце гл. 34 (вып. 3), мы найдем соотношение
которое говорит, что масса «фотона» Юкавы равна m
ДВИЖЕНИЕ ЗАРЯДОВ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ
§ 1. Движение в однородных электрическом я магнитном полях
§ 2. Анализатор импульсов
§ 3. Электростатическая линза
§ 4. Магнитная линза
§ 5. Электронный микроскоп
§ 6. Стабилизирующие поля ускорителей
§ 7. Фокусировка чередующимся градиентом
§ 8. Движение в скрещенных электрическом и магнитном полях
§ 1. Движение в однородных электрическом и магнитном полях
Мы теперь перейдем к описанию в общих чертах движения зарядов в различных условиях. Наиболее интересные явления возникают тогда, когда зарядов движется много и все они взаимодействуют друг с другом. Так обстоит дело, когда электромагнитные волны проходят через кусок вещества или плазму; тогда легионы зарядов взаимодействуют друг с другом. Но это очень сложная картина. Позднее мы поговорим и о таких проблемах; пока же мы обсудим несравненно более простую задачу о движении отдельного заряда в
Начать, по-видимому, нужно с движения частицы в однородном электрическом поле. Движение при небольших скоростях не представляет особенного интереса — это просто равномерно ускоренное движение в направлении поля. А вот когда частица, набрав достаточно энергии, превращается в релятивистскую, движение ее становится более сложным. Решение для этого случая я оставляю вам — потрудитесь и отыщите его сами.
Мы же рассмотрим движение в однородном магнитном поле, когда электрического поля нет. Эту задачу мы уже решали. Одним из решений было движение частиц по окружности. Магнитная сила
Таким образом, радиус круговой орбиты равен
(29.1)
Это одно из возможных движений. Если движущаяся частица имеет только одну составляющую в направлении поля, то она не изменяется, ибо у магнитной силы отсутствует компонента в направлении поля. Общее же движение частицы в однородном магнитном поле — это движение с постоянной скоростью в направлении В и круговое движение под прямым углом к В, т. е. движение по цилиндрической спирали (фиг. 29.1). Радиус спирали определяется равенством (29.1) с заменой
§ 2. Анализатор импульсов