Читаем Feynmann 6a полностью

Но за это преимущество приходится расплачиваться, ибо метод требует большого объема однородного магнитного поля, и он практически пригоден только для частиц с небольшой энергией. Если вы помните, один из способов получения одно­родного поля — это намотать провод на сферу так, чтобы поверх­ностная плотность тока была пропорциональна синусу угла. Вы можете доказать, что то же самое справедливо и для эллипсо­ида вращения. Поэтому очень часто такой спектрометр изготов­ляют, просто наматывая эллипсоидальные витки на деревянный или алюминиевый каркас. Единственное, что при этом требует­ся,— это чтобы ток на любом интервале оси Ах (фиг. 29.4) был одним и тем же.

§ 3. Электростатическая линза

Фокусировка частицы имеет множество применений. Напри­мер, в телевизионной трубке электроны, вылетающие из катода, фокусируются на экране в маленькое пятнышко. Делается это для того, чтобы отобрать электроны одинаковой энергии, но летящие под различными углами, и собрать их в небольшую точ­ку. Эта задача напоминает фокусировку света с помощью линз, поэтому устройства, которые выполняют такие функции, тоже называются линзами.

В качестве примера электронной линзы здесь приведена фиг. 29.5. Это «электростатическая» линза, действие которой зависит от электрического поля между двумя соседними электро­дами. Работу ее можно понять, проследив за тем, что она делает с входящим слева параллельным пучком частиц. Попав в об­ласть а, электроны испытывают действие силы с боковой ком­понентой, которая прижимает их к оси. В области b электроны, казалось бы, должны получить равный по величине, но проти­воположный по знаку импульс, однако это не так. К тому вре­мени, когда они достигнут области b, энергия их несколько увеличится, и поэтому на прохождение области b они затратят меньше времени.

Фиг. 29.5. Электростатическая линза. Показаны силовые линии, т. е. линии вектора qE.

Силы-то те же самые, но время их действия меньше, поэтому и импульс будет меньше. А полный импульс силы при прохождении областей а и b направлен к оси, так что в результате электроны стягиваются к одной общей точке. По­кидая область высокого напряжения, частицы получают доба­вочный толчок по направлению к оси. В области с сила направ­лена от оси, а в области d — к оси, но во второй области час­тица остается дольше, так что снова полный импульс направлен к оси. Для небольших расстояний от оси полный импульс силы на протяжении всей линзы пропорционален расстоянию от оси (понимаете почему?), и это как раз основное условие, необхо­димое для обеспечения фокусировки линз такого типа.

С помощью этих же рассуждений вы можете убедиться, что фокусировка будет достигнута во всех случаях, когда потенциал в середине электрода по отношению к двум другим либо положи­телен, либо отрицателен. Электростатические линзы такого типа обычно используются в катоднолучевых трубках и некоторых электронных микроскопах.

§ 4. Магнитная линза

: Есть еще один сорт линз — их часто можно встретить в электронных микроскопах — это магнитные линзы. Схемати­чески они изображены на фиг. 29.6. Цилиндрически симметрич­ный электромагнит с очень острыми кольцевыми наконечниками полюсов создает в малой области очень сильное неоднородное магнитное поле. Оно фокусирует электроны, летящие вертикаль­но через эту область. Механизм фокусировки нетрудно понять; посмотрите увеличенное изображение области вблизи наконеч­ников полюсов на фиг. 29.7. Вы видите два электрона а и b, которые покидают источник S под некоторым углом по отноше­нию к оси. Как только электрон а достигнет начала поля, го­ризонтальная компонента поля отклонит его в направлении от вас. Он приобретет боковую скорость и, пролетая через сильное вертикальное поле, получит импульс в направлении к оси. Бо­ковое же движение убирается магнитной силой, когда электрон покидает поле, так что оконча­тельным эффектом будет им­пульс, направленный к оси, плюс «вращение» относительно нее.

Фиг. 29.6. Магнитная линза.

Фиг. 29.7. Движение электрона в магнитной линзе.

На частицу b действуют те же силы, но в противоположном направлении, поэтому она тоже отклоняется по направлению к оси. На рисунке видно, как расходящиеся электроны соби­раются в параллельный пучок. Действие такого устройства подобно действию линзы на находящийся в ее фокусе объект. Если бы теперь вверху поставить еще одну такую же линзу, то она бы сфокусировала электроны снова в одну точку и по­лучилось бы изображение источника S.

§ 5. Электронный микроскоп

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука