Читаем Feynmann 7 полностью

Начнем с важного экспериментального факта. Когда мы занимались потоком «сухой» воды, обтекающей какой-то пред­мет или текущей мимо него, т. е. так называемым «потенциаль­ным потоком», у нас не было причин запретить воде иметь составляющую скорости, тангенциальную к поверхности пред­мета; только нормальная компонента должна была быть равна нулю. Мы не принимали во внимание возможность возникнове­ния сил сдвига между жидкостью и твердым телом. А вот ока­зывается, хотя это далеко и не очевидно, что во всех случаях, где это было проверено экспериментально, скорость жидкости на поверхности твердого тела в точности равна нулю. Вы заме­чали, конечно, что лопасти вентилятора собирают на себя тонкий слой пыли, и это несмотря на то, что они вращаются в воздухе. Тот же эффект можно наблюдать даже в больших аэродинамических трубах. Почему же пыль не сдувается воз­духом? Несмотря на то что лопасти вентилятора быстро вра­щаются в воздухе, скорость воздуха относительно них, измерен­ная непосредственно на их поверхности, равна нулю, так что поток воздуха не возмущает даже мельчайших пылинок. Мы должны модифицировать теорию так, чтобы она согласо­валась с тем экспериментальным фактом, что во всех обычных жидкостях молекулы, находящиеся рядом с поверхностью, имеют нулевую скорость (относительно поверхности).

Сначала мы характеризовали жидкость так, что если при­ложить к ней напряжение сдвига, то, сколь бы мало оно ни было, жидкость «поддается» и течет. В статическом случае никаких напряжений сдвига нет. Однако, когда равновесия еще нет, в момент, когда вы давите на жидкость, силы сдвига вполне могут быть. Вязкость как раз и описывает эти силы, возникающие в движущейся жидкости. Чтобы измерить силы сдвига в процессе движения жидкости, рассмотрим такой экспе­римент. Предположим, что имеются две плоские твердые пла­стины, между которыми находится вода (фиг. 41.1), причем одна из пластин неподвижна, тогда как другая движется парал­лельно ей с малой скоростью v0.

Фиг. 41.1. Увлечение жидкости между двумя параллельными пластинками.

Если вы будете измерять силу, требуемую для поддержания движения верхней пластины, то найдете, что она пропорциональна площади пластины и отно­шению v0/d, где d расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально v0/d:

Коэффициент пропорциональности h называется коэффициен­том вязкости.

Если перед нами более сложный случай, то мы всегда можем рассмотреть в воде небольшой плоский прямоугольный объем, грани которого параллельны потоку (фиг. 41.2).

Фиг. 41.2. Напряжения сдви­га в вязкой жидкости.

Силы в этом объеме определяются выражением

Далее, дvx/дy представляет скорость изменения деформаций сдвига, определенных нами в гл. 38, так что силы в жидкости пропорциональны скорости изменения деформаций сдвига.

В общем случае мы пишем

При равномерном вра­щении жидкости производ­ная дuх/ду равна дvy/дx с обратным знаком, a Sxy будет равна нулю, как это и требуется, ибо в равно­мерно вращающейся жидкости напряжения отсутствуют. (Подобную же вещь мы проде­лывали в гл. 39 при определении еxy .) Разумеется, для Syz и Sгх тоже есть соответствующие выражения.

В качестве примера применения этих идей рассмотрим дви­жение жидкости между двумя коаксиальными цилиндрами. Пусть радиус внутреннего цилиндра равен а, его скорость будет vа, а радиус внешнего цилиндра пусть будет b, а скорость равна vb (фиг. 41.3).

Фиг. 41.3. Поток жидкости между двумя концентрическими цилиндрами, вращающимися с разными угловыми скоростями.

Возникает вопрос, каково распределение скоростей между цилиндрами? Чтобы ответить на него, начнем с получения формулы для вязкого сдвига в жидкости на рас­стоянии r от оси. Из симметрии задачи можно предположить, что поток всегда тангенциален и что его величина зависит только от r; v=v(r). Если мы понаблюдаем за соринкой в воде, расположенной на расстоянии r от оси, то ее координаты как функции времени будут

x = rcoswt, у=rsinwt,

где w=v/r. При этом х- и y-компоненты скорости равны

vx=-rwsinwt =-wу и vy= rwcoswt=wх. (41.4)

Из формулы (41.3) получаем

Для точек с у=0 имеем дw/ду=0, а х(дw/дх) будет равно r(dw)/dr). Так что в этих точках

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука