Уравнение получилось, конечно, сложное, но ничего не поделаешь, такова природа.
Если мы введем W=СXv, как делали это раньше, то наше уравнение можно записать в виде
Мы снова предполагаем, что единственными объемными силами являются консервативные силы типа сил тяжести. Чтобы понять смысл нового члена, давайте рассмотрим случай несжимаемой жидкости. Если мы возьмем ротор уравнения (41.16), то получим
Это напоминает (40.9) с той только разницей, что в правой части имеется еще одно слагаемое. Когда правая часть была равна нулю, то имелась теорема Гельмгольца о том, что вихри всегда движутся вместе с жидкостью. Теперь же в правой части появилось довольно сложное выражение, из которого, однако, не сразу же следуют физические выводы. Если бы мы пренебрегли членом СX(WXv), то получили бы
Именно поэтому утолщаются кольца табачного дыма. С этим же связано красивое явление, возникающее при прохождении кольца «чистого» вихря (т. е. «бездымного» кольца, созданного с помощью описанной в предыдущей главе аппаратуры) через облако дыма. Когда оно выходит из облака, к нему «прилипает» некое количество дыма и мы видим полую оболочку из дыма. Какое-то количество завихренности W диффундирует в окружающий дым, продолжая свое движение вперед вместе с вихрем.
§ 3. Число Рейнольдса
Посмотрим теперь, как изменяется течение жидкости из-за нового члена с вязкостью. Рассмотрим несколько подробнее две задачи. Первая — обтекание жидкостью цилиндра; эту задачу мы пытались решить в предыдущей главе, используя теорию невязкой жидкости. Оказывается, что сегодня возможно найти решение вязких уравнений только для некоторых специальных случаев. Так что кое-что из того, что я расскажу вам, основано на экспериментальных измерениях, считая, конечно, что экспериментальная модель удовлетворяла уравнению (41.17).
Математически задача состоит в следующем: мы хотим найти решение для потока несжимаемой вязкой жидкости вблизи длинного цилиндра диаметром
W=СXv (41.18)
с условием, что скорость на больших расстояниях равна некоторой постоянной
vя=vу=vz=0 (41.19)
при
x2+y2=D2/4.
Это полностью определяет математическую задачу.
Если вы вглядитесь в эти выражения, то увидите, что в задаче есть четыре различных параметра: h, r,
При этом параметр
t=t'D/V. (41.20)
В наших новых переменных производные в уравнении (41.18) тоже изменятся: так,
А наше основное уравнение (41.17) перейдет в
Все постоянные при этом собираются в один множитель, который мы, следуя традиции, обозначим через
Если теперь мы просто запомним, что все наши уравнения должны выписываться для величин, измеряемых в новых единицах, то все штрихи можно опустить. Тогда уравнения для потока примут вид
и
с условиями ,
v=0 , для
и
vx=1, vy=vz=0
x2+y2+z2>>1.
Что все это значит? Если, например, мы решили задачу для потока с одной скоростью V