Читаем Feynmann 7 полностью

Вас может удивить: «Что же такое мелкомасштабная турбу­лентность и как она может поддерживать сама себя? Как за­вихренность, которая создается где-то на краях цилиндра, приводит к такому шуму позади него?». Ответ снова очень интересен. Завихренность имеет тенденцию к самоусилению. Если мы на минуту забудем о диффузии завихренности, которая обусловливает потери, то законы потока говорят (как мы уже видели), что линии вихря переносятся вместе с жидкостью со скоростью v. Представьте себе некоторое количество линий О, которые возмущаются и скручиваются очень сложной картиной скоростей потока v. Прежде простые линии спу­таются и сожмутся. Величина завихренности будет возрастать, равно как и ее нерегулярности (положительные и отрицатель­ные), которые, вообще говоря, тоже будут увеличиваться. Таким образом, завихренность в трех измерениях по мере перемешивания жидкости будет возрастать.

Вы можете также спросить: «Когда же в конце концов справедлива теория потенциального потока?» Прежде всего она удовлетворительна вне турбулентной области, куда проник­новение завихренности из-за диффузии незначительно. Изго­товляя специальные обтекаемые тела, мы стараемся сделать область турбулентности как можно меньше. Поток, обтекающий крылья самолета, которые имеют специальную рассчитанную форму,— почти настоящий потенциальный поток.

§ 6. Поток Куеттэ

Можно показать, что сложный и изменчивый характер потока мимо цилиндра не исключение и что такое разнообразие возможностей получается и в общем случае. В § 1 мы нашли решение для вязкой жидкости между двумя цилиндрами и можем сравнить эти результаты с тем, что получается на самом деле. Если мы возьмем два концентрических цилиндра и запол­ним пространство между ними маслом с добавленной в него мелкой алюминиевой пудрой, то поток можно легко наблюдать. Если начнем медленно вращать внешний цилиндр, то ничего неожиданного не произойдет (фиг. 41.8, а). Можно медленно вращать и внутренний цилиндр, все равно ничего потрясающего не будет. А вот если мы начнем очень быстро вращать внутренний цилиндр — случится нечто удивительное. Жидкость разобьется на горизонтальные полосы (фиг. 41.8, б). Если с по­добной же скоростью мы будем вращать внешний, цилиндр, а внутренний оставим в покое, то никакого похожего эффекта не возникает. Как же получается, что не все равно, какой ци­линдр вращать — внутренний или внешний. Ведь в конце концов вид потока, который мы нашли в § 1, зависел только от wb-wа. Ответ можно получить, взглянув на сечение цилиндра, изображенного на фиг. 41.9. Когда внутренние слои жидкости движутся быстрее, чем внешние, они стремятся двигаться наружу: центробежная сила становится больше удерживающего давления. Но весь слой целиком не может двигаться равно­мерно, так как на его пути стоят внешние слои. Поэтому они

разбиваются на клетки и цир­кулируют, как показано на фиг. 41.9, б.

Фиг. 41.9. Вот почему поток разбивается на полосы.

Это напоминает кон­векционные токи в комнате, где на уровне пола имеется слой теплого воздуха. Когда внутрен­ний цилиндр находится в покое, а внешний цилиндр вращается с большой скоростью, центро­бежные силы создают градиент давления, который удерживает все в равновесии

(фиг. 41.9, в),как теплый воздух, находящийся у нотолка.

Теперь ускорим внутренний цилиндр. Сначала число полос увеличится. Затем неожиданно полосы станут волнистыми (см. фиг. 41.8,в), и волны эти начнут обтекать цилиндр.

Фиг. 41.8. Виды потока жидкости между двумя прозрачными вращаю­щимися цилиндрами.

Скорость этих волн легко измерить. При больших скоростях вращения она приближается к 1/3 от скорости внутреннего цилиндра, а почему, никто не знает. Здесь есть над чем подумать. Простое число 1/3 и полное отсутствие объяснения! Вообще говоря, весь механизм образования волн тоже далеко не ясен, хотя мы имеем дело со стационарным ламинарным потоком.

Если теперь мы еще начнем вращать и внешний цилиндр, но в противоположную сторону, то картина потока начнет разбиваться. Волновые области начнут чередоваться со спокой­ными на вид областями, образуя спиральную картину (см. фиг. 41.8, г). Однако в этих «спокойных» областях, как можно заметить, поток на самом деле совсем не регулярен; он полностью турбулентен. Кроме того, в волновых областях начинает еще появляться нерегулярный турбулентный поток. Если цилиндры вращаются еще быстрее, то весь поток стано­вится хаотическим турбулентным.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука