согласно которому два осциллирующих члена равны третьему. Это может произойти, только когда частоты всех осцилляции одинаковы. (Невозможно, сложив три или какое-то другое число подобных членов с различными частотами, получить для любого момента времени в результате нуль.) Итак,
w"=w'=w, (33.39)
как это и было нам всегда известно, т. е. частоты преломленной и отраженной волн те же самые, что и падающей.
Если бы мы предположили это с самого начала, то несомненно избежали бы многих трудностей, но мне хотелось показать вам, что тот же самый результат можно получить и из уравнений. А вот когда перед вами будет стоять реальная задача, лучше всего пускать в оборот сразу все, что вы знаете. Это избавит вас от лишних хлопот.
По определению
А теперь обратимся к уравнению (33.38) для
k"y=k'y=ky. (33.41)
Из формулы (33.40) k'2=k2, так что
k'2x+k'2y =k2x+k2y. Комбинируя это с (33.41), находим
k'2x=k2x , или
Два соотношения (33.41) и (33.42) говорят нам, что угол отражения равен углу падения, как это и ожидалось (см. фиг. 33.3). Итак, в отраженной волне
Для преломленной волны мы уже получали
Их можно решить и в результате получить
Предположим на мгновение, что n
ky/k =sinqi, ky/k"=sinqt. (33.46)
Но ввиду уравнения (33.44) мы получаем
n2sinq
т. е. уже известный нам закон Снелла для преломления. Если же показатель преломления не вещественный, то волновые числа оказываются комплексными и нам следует воспользоваться
(33.45). [Конечно, мы могли бы
(33.46), и тогда закон Снелла (33.47) был бы верен и в общем случае. Однако при этом углы тоже стали бы комплексными числами и, следовательно, потеряли бы свою геометрическую интерпретацию как углы. Уж лучше описывать поведение волн соответствующими комплексными величинами kx или
До сих пор мы не обнаружили ничего нового. Мы доставили себе только простенькое развлечение, выводя очевидные вещи из сложного математического механизма. А сейчас мы готовы найти амплитуды волн, которые нам еще не известны. Используя результаты для всех w и
Но поскольку мы не знаем ни
Bx2 =Bx1. Согласно условиям (33.35)—(33.37),
Вспоминая, что w" =w'= w и
Но это снова уравнение (33.48)! Мы напрасно потратили время и получили то, что уже давно нам известно.
Можно было бы обратиться к (33.30) B
Подставляя вместо
Учитывая равенство всех w и
Это дает нам уравнение для величины
Вместе с (33.45) или (33.46) для
Если взять поляризованную волну с вектором Е,
При этом мы найдем
и
Давайте посмотрим, будет ли наш результат согласовываться с тем, что мы получали раньше. Выражение (33.3) мы вывели в вып. 3, когда находили отношение интенсивностей отраженной и падающей волн. Однако тогда мы рассматривали только
k"x=k"cosqt=(wn2/c)cosqt.