Читаем Feynmann 7 полностью

Пусть по проводу течет ток I. Каково при этом магнитное поле? Оно будет сосредоточено главным образом внутри железа, причем там (см. фиг. 36.7, б) силовые линии должны быть круговыми. Вследствие постоянства потока В его дивергенция равна нулю, и уравнение (36.16) удовлетворяется автоматически. Запишем затем уравнение (36.17) в другой форме, проинтегрировав его по замкнутому контуру Г, показанному на фиг. 36.7, б. Из теоремы Стокса мы получаем

где интеграл от j берется по поверхности S, ограниченной кон­туром Г. Каждый виток обмотки пересекает эту поверхность один раз, поэтому каждый виток дает в интеграл вклад, равный I, а пос­кольку всего витков N штук, то интеграл будет равен NI. Из симметрии нашей задачи видно, что В одинаково на всем контуре Г, если, конечно, намагниченность, а следовательно, и поле Н тоже постоянны на контуре Г. Уравнение (36.19) при таких условиях принимает вид

где l—длина кривой Г. Таким образом,

Именно из-за того что в задачах подобного типа поле Н прямо пропорционально намагничивающему току, оно иногда назы­вается намагничивающим.

Единственное, что нам теперь требуется,— это уравнение, связывающее Н с В. Однако такого уравнения просто не суще­ствует! У нас есть, конечно, уравнение (36.18), но от него мало проку, ибо в ферромагнитных материалах типа железа оно не дает прямой связи между М и В. Намагниченность М зависит от всей предыдущей истории данного образца железа, а не толь­ко от того, каково поле В в данный момент и как оно изменялось раньше.

Впрочем, еще не все потеряно. В некоторых простых слу­чаях мы все же можем найти решение. Если взять ненамагни­ченное железо, скажем, отожженное при высокой температуре, то для такого простого тела, как тор, магнитная предыстория всего железа будет одной и той же. Затем из экспериментальных измерений мы можем кое-что сказать относительно М, а следо­вательно, и о связи между В и Н. Из уравнения (36.20) видно, что поле В внутри тора равно произведению некоторой посто­янной на величину тока в обмотке I. А поле В можно измерить интегрированием по времени э.д.с. в намагничивающей обмотке, изображенной на рисунке (или в дополнительной обмотке, на­мотанной поверх нее). Эта э.д.с. равна скорости изменения по­тока В, так что интеграл от э.д.с. по времени равен произведе­нию В на площадь поперечного сечения тора.

На фиг. 36.8 показано соотношение между В и Н, наблюда­емое в сердечнике из мягкого железа.

Фиг. 36.8. Типичная кривая намагничивания и петля гис­терезиса мягкого железа.

Когда ток включается в первый раз, увеличение В с Н происходит по кривой а. Обра­тите внимание на различие масштабов по осям В и Н; вначале, чтобы получить большое В, необходимо относительно малое Н. Почему же в случае железа поле В намного больше, чем было бы без него? Да потому, что возникает большая намагниченность М, эквивалентная большому поверхностному току в железе, а поле определяется суммой этого тока и тока проводимости в обмотке. А почему намагниченность М оказывается такой боль­шой, мы обсудим позднее.

При больших значениях Н кривая намагничивания «вырав­нивается». Мы говорим, что железо насыщается. В масштабах нашей фигуры кривая становится горизонталь­ной, на самом же деле намагниченность продол­жает слабо расти: для больших полей В становит­ся равным Н и намагни­ченность М уже не увели­чивается. Кстати, если бы сердечник был сделан из немагнитного материала, то намагниченность М была бы равна нулю, а В было бы равно для всех полей Н.

Прежде всего заметим, что кривая а на фиг. 36.8, так назы­ваемая кривая намагничивания,— в высшей степени нелинейна. Впрочем, положение здесь гораздо сложнее. Если после до­стижения насыщения мы уменьшим ток в катушке и вернем Н снова к нулю, магнитное поле В будет падать по кривой b. Когда Н достигнет нуля, В еще не будет нулем. Даже после выключения намагничивающего тока магнитное поле в железе остается: железо становится постоянно намагниченным. Если теперь включить в катушке ток в обратном направлении, то кривая ВН пойдет дальше по ветви b до тех пор, пока же­лезо не намагнитится до насыщения в противоположном нап­равлении. При дальнейшем уменьшении тока до нуля В пойдет по кривой с. Когда мы меняем ток от большой положительной до большой отрицательной величины, кривая ВН будет идти вверх и вниз очень близко к ветвям b и c. Если же, однако, Н менять каким-то произвольным образом, то возникнут более сложные кривые, которые, вообще говоря, будут лежать между кривыми b и c. Кривая, полученная повторными изменениями полей, называется петлей гистерезиса.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука