Читаем Feynmann 7 полностью

Математика тензоров особенно полезна для описания свойств веществ, которые изменяются с направлением, хотя это лишь один из приме­ров ее использования. Поскольку большин­ство из вас не собираются стать физиками, а намерены заниматься реальным миром, где зависимость от направления весьма сильная, то рано или поздно, но вам понадобится исполь­зовать тензор. Вот, чтобы у вас не было здесь пробела, я и собираюсь рассказать вам про тензоры, хотя и не очень подробно. Я хочу, чтобы ваше понимание физики было как можно более полным. Электродинамика, например, у нас вполне законченный курс; она столь же полна, как и любой курс электричества и магнетизма, даже институтский. А вот механика у нас не закончена, ибо, когда мы ее изучали, вы еще не были столь тверды в математике и мы не могли обсуждать такие разделы, как принцип наименьшего действия, лагран­жианы, гамильтонианы и т. п., которые представляют наиболее элегантный способ описания механики. Однако полный свод законов механики, за исключением теории относительности, у нас все же есть. В той же степени, как электричество и магне­тизм, у нас закончены многие разделы. Но вот квантовую ме­ханику мы так и не закончим; впрочем, нужно что-то оставить и на будущее! И все же, что такое тензор, вам все-таки следует знать уже сейчас.

В гл. 30 мы подчеркивали, что свойства кристаллического вещества в разных направлениях различны — мы говорим, что оно анизотропно. Изменение индуцированного дипольного мо­мента с изменением направления приложенного электрического поля — это только один пример, но именно его мы и возьмем в качестве примера тензора. Будем считать, что для заданного направления электрического поля индуцированный дипольный момент единицы объема Р пропорционален напряженности при­кладываемого поля Е. (Для многих веществ при не слишком больших Е это очень хорошее приближение.) Пусть константа пропорциональности будет α. Теперь мы хотим рассмотреть вещества, у которых а зависит от направления приложенного поля, например известный вам кристалл турмалина, дающий удвоенное изображение, когда вы смотрите через него.

Предположим, мы обнаружили, что для некоторого выбран­ного кристалла электрическое поле Е1; направленное по оси х, дает поляризацию Р1, направленную по той же оси, а одина­ковое с ним по величине электрическое поле Е2, направленное по оси у, приводит к какой-то другой поляризации Р2, тоже нап­равленной по оси у. А что получится, если электрическое поле приложить под углом 45°? Ну, поскольку оно будет просто суперпозицией двух полей, направленных вдоль осей х и y, то поляризация Р равна сумме векторов P1 и Р2, как это пока­зано на фиг. 31.1, а.

Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.

Поляризация уже не параллельна направ­лению электрического поля. Нетрудно понять, отчего так про­исходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заря­ды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы. Разумеется, угол 45° ничем не выде­лен. То, что индуцированная поляри­зация не направлена по электрическо­му полю, справедливо и в общем случае. Перед этим нам просто «посчастливи­лось» выбрать такие оси х и у, для которых поляризация Р была направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызван­ная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,6. Но несмотря на все это ус­ложнение, величина поляризации Р для любого поля Е по-преж­нему пропорциональна его величине.

Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Р с компонентами по всем трем осям, поэтому мы можем написать

Рx =axxEx, Ру=aухЕх, Рz=azxЕx. (31.1)

Этим я хочу сказать лишь, что электрическое поле, направ­ленное по оси х, создает поляризацию не только в этом нап­равлении, оно приводит к трем компонентам поляризации Рх, Рy и Pz, каждая из которых пропорциональна Ех. Коэффициен­ты пропорциональности мы назвали aхх, aух и azx (первый зна­чок говорит, о какой компоненте идет речь, а второй относится к направлению электрического поля).

Аналогично, для поля, направленного по оси у, мы можем написать

Рх=aхуЕy, Ру=aууЕу, Рz=aгуЕу, (31.2)

а для поля в z-направлении

Px=axzEz, Py=ayzEz Pz=azzEz. (31,3)

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука