Читаем Feynmann 7 полностью

Чтобы получить скорость, мы использовали закон сохране­ния энергии [см. уравнение (40.18)]. Можно еще рассмотреть закон сохранения импульса. Поскольку с выходящей струей должен утекать и импульс, то к поперечному сечению выходя­щей трубы должна быть приложена сила. Откуда же она берется? Сила эта должна происходить от давления на стенки. Но наше выходное отверстие мало и расположено далеко от стенок, поэтому скорость жидкости вблизи стенок резервуара будет очень мала. Следовательно, давление на каждую стенку, согласно (40.14), почти точно такое же, как статическое дав­ление в покоящейся жидкости. При этом статическое давление на любую точку с одной стороны резервуара должно урав­новешиваться равным давлением на противоположную стенку, за исключением точки на стороне, противоположной выходной трубе. Если теперь мы вычислим импульс, выталкиваемый со струей этим давлением, то сможем показать, что коэффициент истечения равен 1/2. Однако этот метод непригоден для отвер­стия, наподобие показанного на фиг. 40.7, ибо увеличение ско­рости около стенок вблизи области отверстия дает падение давления, которое невозможно вычислить.

Рассмотрим теперь другой пример — горизонтальную трубу с переменным поперечным сечением (фиг. 40.9), по которой от одного конца к другому течет вода.

Фиг. 40.9. Там, где скорость повышается, давление пони­жается.

Сохранение энергии, а именно формула Бернулли, говорит, что в суженной области, там, где скорость выше, давление ниже. Мы можем легко про­демонстрировать этот эффект, измеряя давление в разных местах с различным сече­нием с помощью столбика воды, сообщающегося с потоком через достаточно малые отверстия, не возмущающие потока. При этом давление измеряется высотой вертикального столбика воды. И оно в узких местах действи­тельно оказывается меньше, чем в широких. Если после суже­ния площадь сечения возвращается к своей прежней величине — той, что была до сокращения, то давление снова возрастает. Формула Бернулли предсказывает, что давление до сужения должно быть тем же, что и после него, однако на самом деле оно заметно меньше. Ошибка нашего предсказания кроется в том, что мы пренебрегли трением, вязкой силой, которая вы­зывает падение давления вдоль трубы. Однако, несмотря на это падение, давление в узком месте определенно меньше (из-за возрастания скорости), чем по обеим сторонам от него, как это предсказал Бернулли. Скорость v2 должна превышать скорость v1 чтобы через сужение могло пройти то же количе­ство воды. Поэтому вода должна ускоряться, переходя из широкой части в узкую. Силы, которые приводят к этому ус­корению, и есть перепад дав­ления.

Этот результат можно про­верить с помощью еще одного простого опыта. Представьте, что у нас есть резервуар с водой и выходной трубой, которая выбрасывает струю воды вверх (фиг. 40.10).

Фиг. 40.10. Доказательство того что v не равно Ц2gh,

Если бы скорость истечения была в точности равна Ц2gh, то выходящая вода должна была бы подняться вплоть до уровня воды в резервуаре. Однако на опыте она начинает падать несколько ниже его. Наше приближение оказывается очень грубым; вязкое трение, которое мы не учли в нашей формуле для сохранения энергии, приводит к потере энергии. Пытались ли вы когда-нибудь, дунув между двумя слип­шимися листками бумаги, оторвать их друг от друга? Попытай­тесь! Они сойдутся вновь. Причина, разумеется, состоит в том, что воздух между листами имеет большую скорость, нежели когда он выходит наружу. Поэтому давление между листами ниже атмосферного, и они вместо того, чтобы разлететься в раз­ные стороны, соединятся.

§ 4. Циркуляция

В начале предыдущего параграфа мы видели, что если у нас есть безвихревая несжимаемая жидкость, то поток удов­летворяет следующим двум уравнениям:

С·v=0, СXv=0. (40.19)

Эти уравнения аналогичны уравнениям электростатики или магнитостатики в пустом пространстве. При отсутствии зарядов дивергенция электрического поля равна нулю, а ротор электро­статического поля всегда равен нулю. Ротор магнитного поля равен нулю при отсутствии токов, а дивергенция магнитного поля всегда равна нулю. Следовательно, уравнения (40.19) имеют такие же решения, как и уравнения для Е в электро­статике или уравнения для В в магнитостатике. Фактически в гл. 12, § 5 (вып. 5), мы уже решили задачу об обтекании сферы потоком в качестве электростатического аналога. Электростатическим аналогом является однородное электриче­ское поле плюс поле диполя, причем поле диполя подбирается таким, чтобы скорость потока, нормальная к поверхности сферы, была равна нулю. Задачу об обтекании цилиндра можно решить таким же способом, выбрав подходящее направление диполя относительно однородного потока. Эти решения спра­ведливы в тех случаях, когда скорость жидкости на больших расстояниях постоянна как по величине, так и по направлению. Они изображены на фиг. 40.11,а.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука