Читаем Feynmann 9 полностью

Это означает, что добавление донорной примеси, которое увели­чивает число Nn, вызывает такое уменьшение количества Np положительных носителей, что NnNp не изменяется. Если кон­центрация примеси достаточно высока, то число Nn отрицатель­ных носителей определяется количеством донорных узлов и почти не зависит от температуры — все изменения в экспоненте происходят за счет Nр, даже если оно много меньше Nn. В чи­стом в других отношениях кристалле с небольшой концентра­цией донорной примеси будут преобладать отрицательные носи­тели; такой материал называется полупроводником «n-типа».

Если в кристаллической решетке добавлена примесь акцеп­торного типа, то кое-какие из новых дырок, блуждая, начнут аннигилировать с некоторыми свободными электронами, соз­даваемыми тепловыми флуктуациями. Это будет продолжаться до тех пор, пока не выполнится уравнение (12.4). В равновес­ных условиях количество положительных носителей возрастает, а количество отрицательных убывает, поддерживая произведе­ние постоянным. Материал с избытком положительных носите­лей называется полупроводником «p-типа».

Если к полупроводниковому кристаллу приложить пару электродов и присоединить их к источнику разницы потенциа­лов, то внутри кристалла появится электрическое поле. Оно вынудит двигаться положительные и отрицательные носители, и потечет электрический ток. Посмотрим сперва, что прои­зойдет в материале n-типа, в котором имеется подавляющее большинство отрицательных носителей. В таком материале дырками можно пренебречь; они очень слабо скажутся на токе, потому что их мало. В идеальном кристалле при конечной тем­пературе (а особенно в кристалле с примесями) электроны пере­мещаются не совсем беспрепятственно. С ними беспрерывно происходят столкновения, которые сбивают их с намеченного ими пути, т. е. меняют их импульс. Эти столкновения — те самые рассеяния, о которых мы толковали в предыдущей главе и которые происходят на неровностях кристаллической решетки. В материале re-типа главной причиной рассеяния служат те самые донорные узлы, которые поставляют носителей. Раз у электронов проводимости энергия на донорных узлах немного иная, то волны вероятности обязаны на этом месте рассеиваться. Но даже в идеально чистом кристалле бывают (при ненулевой температуре) нерегулярности решетки, вызванные тепловыми колебаниями. С классической точки зрения можно говорить, что атомы не выстроены точно в правильную решетку, а в любое мгновение немного сдвинуты со своих мест по причине тепловых колебаний. Энергия Е0, связывавшаяся по теории, изложенной в гл. 11, с каждой точкой решетки, чуть-чуть меняется от одного места к другому, так что волны амплитуды вероятности не передаются идеально, а каким-то неправильным образом рассеиваются. И при очень высоких температурах или для очень чистых веществ такое рассеяние может стать очень важным, но в большинстве примесных полупроводников, применяемых в практических устройствах, рассеяние происходит только за счет атомов примеси. Мы сейчас оценим величину электриче­ской проводимости в таких веществах.

Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, кото­рые обычно движутся случайным образом, имея при этом теп­ловую энергию, начнут в среднем повышать свою скорость дрей­фа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типич­ными тепловыми скоростями очень мала, так что можно, прики­дывая величину тока, принять, что от столкновения к столкно­вению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен qn. Сила, действующая на носитель в электрическом поле x, будет равна qnx. В гл. 43, §3 (вып. 4) мы как раз подсчиты­вали среднюю скорость дрейфа в таких условиях и нашли, что она равна Ft/m, где F сила, действующая на заряд; t — среднее время свободного пробега между столкновениями, а m— масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим mn. В этом приближении средняя скорость дрейфа будет равна

Зная скорость дрейфа, можно найти ток. Плотность электриче­ского тока j равна просто числу носителей в единице объема, Nn, умноженному на среднюю скорость дрейфа и на заряд носи­телей. Поэтому плотность тока равна

Мы видим, что плотность тока пропорциональна электриче­скому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и x, или проводимость s, равен

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука