ПРИБЛИЖЕНИЕ НЕЗАВИСИМЫХ ЧАСТИЦ
§ 1. Спиновые волн
§ 2. Две спиновые волны
§ 3. Независимые частицы
§ 4. Молекула бензола
§ 5. Еще немного органической химии
§ 6. Другие применения приближения
§ 1. Спиновые волны
В гл. 11 мы разработали теорию распространения электрона или любой другой «частицы», например атомного возбуждения, вдоль кристаллической решетки. В предыдущей главе мы эту теорию применили к полупроводникам. Но хотя электронов у нас всегда было много, мы тем не менее неизменно пренебрегали каким-либо взаимодействием между ними. Это, конечно, было не более чем приближение, и мы сейчас постараемся глубже разобраться в самой мысли о том, что взаимодействием между электронами разрешается пренебрегать. Мы к тому же воспользуемся возможностью продемонстрировать новые применения теории распространения частиц. Поскольку мы по-прежнему будем продолжать пренебрегать взаимодействием между частицами, то фактически в этой главе будет очень мало нового, разве что новые приложения. Однако первый пример, который мы хотим рассмотреть,— это пример, в котором есть возможность совершенно точно выписать правильные уравнения для случая, когда «частиц» больше чем одна. Из них мы сможем увидеть, как делается приближение пренебрежения взаимодействием. Впрочем, мы не будем слишком тщательно анализировать эту проблему.
В качестве первого примера рассмотрим «спиновую волну» в ферромагнитном кристалле.
Теории ферромагнетизма мы касались в гл.36 (вып. 7). При нулевой температуре все спины электронов, которые дают вклад в магнетизм всего ферромагнитного кристалла, параллельны между собой. Между спинами существует энергия взаимодействия, которая ниже всего тогда, когда все спины направлены вниз. Но при ненулевой температуре имеется какая-то вероятность того, что часть спинов перевернется. Эту вероятность тогда мы приближенно подсчитывали. На этот раз мы разовьем квантовомеханическую теорию явления, чтобы знать, что делать, если нужно будет решить задачу точнее. Но мы все еще будем прибегать к идеализации; будем считать, что электроны расположены вблизи атомов, а спины взаимодействуют только со своими соседями.
Рассмотрим такую модель: пусть в каждом атоме все электроны, кроме одного, спарены, и весь магнитный эффект обязан тому, что в каждом атоме остается один неспаренный электрон со спином 1/2. Вообразим еще, что эти электроны расположены в тех самых узлах решетки, где находятся атомы. Модель в общих чертах отвечает металлическому никелю.
Кроме того, допустим, что любая пара вращающихся соседей-электронов взаимодействует друг с другом и что каждое такое взаимодействие добавляет в энергию системы по слагаемому;