Читаем Feynmann 9 полностью

Для описания состояний, отличных от основного, нам пона­добится своя совокупность базисных состояний. Удобно подойти к делу так: сгруппировать состояния в соответствии с тем, у скольких электронов спин направлен вниз: у одного ли, у двух и т. д. Конечно, состояний, когда один спин направлен вниз, очень много: он может быть опрокинут, скажем, у атома № 4 или у № 5, или у № 6... И можно, конечно, в качестве базисных состояний выбрать именно такие состояния, обозначив их |4>, |5>, | 6>, ... Однако для дальнейшего удобнее, если мы будем отмечать «из ряда вон выходящий атом» (тот, у которого спин направлен вниз) его координатой х. Иначе говоря, мы опре­делим состояние | х5> как такое, в котором все электроны вра­щаются спинами вверх, и один только (тот, что возле атома в точке х5) вращается спином вниз (фиг. 13.1).

Фиг. 13.1. Базисное состояние |x5> системы спинов, расположенных по одной линии.

Все спины направлены вверх, а тот, что в х5, перевернут.

Вообще, |хn> будет обозначать состояние с одним перевернутым спином, рас­положенным в координате хn n-го атома.

Как же действует гамильтониан (13.5) на состояние |x5>? Один из членов гамильтониана это, скажем, — А (Р^7,8-1). Оператор P^7,8 обменивает спинами два соседних атома № 7 и № 8. Но в состоянии |x5> они оба направлены вверх, так что ничего не меняется; Р^7,8 равнозначно умножению на единицу:

Отсюда следует

Стало быть, все члены гамильтониана, кроме тех, куда вхо­дит атом № 5, дадут нуль. Операция P^4,5, действуя на со­стояние |x5>, обменивает спинами атом № 4 (со спином вверх) и атом № 5 (со спином вниз). В результате появляется со­стояние, в котором все спины смотрят вверх, кроме атома в точке 4. Иначе говоря,

Точно так же

Значит, изо всего гамильтониана выживут только члены

Действуя на |x5>, они дадут соответственно

В итоге

Когда гамильтониан действует на состояние |x5>, то возни­кает некоторая амплитуда оказаться в состояниях | x4> и |х6>. Это просто означает, что существует определенная амплитуда того, что направленный книзу спин перепрыгнет к соседнему атому. Значит, из-за взаимодействия между спинами, если вна­чале один спин был направлен вниз, имеется некоторая ве­роятность того, что позднее вместо него вниз будет смотреть другой. При действии на состояние | хn> гамильтониан дает

Заметьте, в частности, что если взять полную систему состоя­ний только с одним спином-«перевертышем», то они будут перемешиваться только между собой. Гамильтониан никогда не перемешает эти состояния с другими, в которых спинов-«перевертышей» больше. Пока вы только обмениваетесь спинами, вы никогда не сможете изменить общего количества перевертышей. Удобно будет использовать для гамильтониана матричное обозначение, скажем,

уравнение (13.7) эквивалентно следующему:

Каковы же теперь уровни энергии для состояний с одним перевернутым спином? Пусть, как обычно, Сn — амплитуда того, что некоторое состояние |y> находится в состоянии |xn>. Если мы хотим, чтобы |y> было состоянием с определенной энергией, то все Сn обязаны одинаково меняться со временем, а именно по правилу

Подставим это пробное решение в наше обычное уравнение Гамильтона

используя в качестве матричных элементов (13.8). Мы, конечно, получим бесконечное количество уравнений, но все их можно будет записать в виде

Перед нами опять в точности та же задача, что и в гл. 11, только там, где раньше стояло Е0, теперь стоит 2А. Решения отвечают амплитудам Сn (амплитудам с перевернутым спином), которые распространяются вдоль решетки с константой распростране­ния k и энергией

Е=2A(1-coskb), (13.12)

где b — постоянная решетки.

Решения с определенной энергией отвечают «волнам» перево­рота спина, называемым «спиновыми волнами». И для каждой длины волны имеется соответствующая энергия. Для больших длин волн (малых k) эта энергия меняется по закону

Е=Аb2k2. (13.13)

Как и прежде, мы можем теперь взять локализованный волно­вой пакет (содержащий, однако, только длинные волны), кото­рый соответствует тому, что электрон-«перевертыш» окажется в такой-то части решетки. Этот перевернутый спин будет вести себя как «частица». Так как ее энергия связана с k формулой (13.13), то эффективная масса «частицы» будет равна

Такие «частицы» иногда именуют «магнонами».

§ 2. Две спиновые волны

Теперь мы хотели бы выяснить, что происходит, когда име­ется пара перевернутых спинов. Опять начнем с выбора системы базисных состояний. Выберем такие состояния, когда спины перевернуты в каких-то двух местах (так, как на фиг. 13.2).

Фиг. 13.2. Состояния с двумя переверну­тыми спинами.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука